
81

JoinSketch: A Sketch Algorithm for Accurate and Unbiased
Inner-Product Estimation
FEIYU WANG, QIZHI CHEN, YUANPENG LI, and TONG YANG∗†, Peking University, China
and Pengcheng Laboratory, China

YAOFENG TU‡, ZTE Corporation, China

LIAN YU, Peking University, China
BIN CUI, Peking University, China

The inner-product estimation is the base of many important tasks in various big data scenarios, including

measuring the similarity of streams in data stream processing, estimating join size in the database, and

analyzing cosine similarity in various applications. Sketch, as a class of probabilistic algorithms, is promising

in inner-product estimation. However, existing sketch solutions suffer from low accuracy due to neglecting the

high skewness of real data. In this paper, we design a new sketch algorithm for accurate and unbiased inner-

product estimation, namely JoinSketch. To improve accuracy, JoinSketch consists of multiple components and

records items with different frequencies in different components. We theoretically prove that JoinSketch is

unbiased and has lower variance than the well-known AGMS and Fast-AGMS sketch. The experimental results

show that JoinSketch improves the accuracy of inner-product by 10 times on average while maintaining a

comparable throughput. All code is open-sourced at Github [2].

CCS Concepts: • Theory of computation→ Sketching and sampling.

Additional Key Words and Phrases: inner-product estimation, sketch, data streams, join size, join cardinality

ACM Reference Format:
Feiyu Wang, Qizhi Chen, Yuanpeng Li, Tong Yang, Yaofeng Tu, Lian Yu, and Bin Cui. 2023. JoinSketch: A

Sketch Algorithm for Accurate and Unbiased Inner-Product Estimation. Proc. ACM Manag. Data 1, 1, Article 81
(May 2023), 26 pages. https://doi.org/10.1145/3588935

1 INTRODUCTION
In many big data scenarios, the data comes as a stream at high speed. There is a growing interest in

processing and analyzing data streams in a single pass to offer statistics of the data stream, including

frequencies [11, 17], heavy hitters [8, 39], heavy changes [6, 47], e.t.c. [22, 48, 51, 56, 57, 59]. The
inner-product of two data streams is an important statistic for data stream analysis, which is defined

∗
Tong Yang (yangtongemail@gmail.com) is the corresponding author.

†
Tong Yang (yangtongemail@gmail.com), National Key Laboratory for Multimedia Information Processing, School of

Computer Science, Peking University, also with Peng Cheng Laboratory, Shenzhen, China.

‡
Yaofeng Tu (tu.yaofeng@zte.com.cn) is the corresponding author.

Authors’ addresses: Feiyu Wang, (wangfeiyu@pku.edu.cn); Qizhi Chen, (hzyoi@pku.edu.cn); Yuanpeng Li, (liyuanpeng@

pku.edu.cn); Tong Yang, (yangtongemail@gmail.com), National Key Laboratory for Multimedia Information Processing,

School of Computer Science, Peking University, Beijing, China and Pengcheng Laboratory, Shenzhen, China; Yaofeng

Tu, (tu.yaofeng@zte.com.cn), ZTE Corporation, Nanjing, China; Lian Yu, (lianyu@ss.pku.edu.cn), School of Software and

Microelectronics, Peking University, Beijing, China; Bin Cui, (bin.cui@pku.edu.cn), National Key Laboratory for Multimedia

Information Processing, School of Computer Science, Peking University, Beijing, China.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

2836-6573/2023/5-ART81 $15.00

https://doi.org/10.1145/3588935

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 81. Publication date: May 2023.

https://doi.org/10.1145/3588935
https://doi.org/10.1145/3588935

81:2 Feiyu Wang, Qizhi Chen, Yuanpeng Li, Tong Yang, Yaofeng Tu, Lian Yu, and Bin Cui

as the inner-product of their frequency vectors and the inner-product is equal to the size of the

join of two data streams (see details in 2.1). We need to track the inner-product of two data streams

in many scenarios. First, in data stream scenarios, the inner-product can be used to measure the

similarity of two data streams, which is important in network measurement and data mining

applications. For example, in data stream scenarios such as network flows in routers and web clicks

in servers, there is a need to track the inner-product of different streams to help analyze the current

running situation of the network. Second, it is significant in database systems to estimate the join

size for the query optimizer[14, 18, 33, 34]. In some cases of database systems, we need to treat all

attribute values from a large table as a data stream[31] because the size of database tables is too

large that we can only process them in one pass. Third, the cosine similarity of two data streams

can be derived from the inner-product and is helpful for some data analysis tasks. However, it is

impracticable and unnecessary to track the exact inner-product in data stream scenarios because of

the high time cost and space cost to compute the exact statistic.

Researchers turn to probabilistic data structures for fast and accurate inner-product estimation.

However, designing an appropriate algorithm is a great challenge because of the high speed and

the huge size of data streams. Meanwhile, unbiased estimation is required in some distributed

scenarios because biased estimation will lead to error accumulation and unbiased estimation is of

theoretical elegance. Hence, the ideal inner-product estimation algorithms are supposed to meet

three requirements. First, the algorithms have to process the data in one pass, and the algorithms are

supposed to be very fast since the data stream comes at a rather high speed. Second, the accuracy of

inner-product estimation should be high enough under small memory usage because the available

memory in real scenarios such as routers is very limited. Third, the estimation provided by the

algorithm is supposed to be unbiased.

Sketches are a class of hash-based probabilistic algorithms which is appropriate for data stream

processing. There are several works focusing on sketch-based solutions for inner-product estimation,

including the AGMS sketch [4, 5], the Fast-AGMS sketch [15], the Count-Min sketch [17], e.t.c.
[23, 25].

The AGMS sketch [4, 5] uses a single counter to estimate the item
1
frequency of a data stream. It

increments/decrements the counter with an equal probability when inserting an item. To estimate

the inner-product of two data streams, one can simplymultiply the AGMS sketch counters associated

with the two data streams. However, the AGMS sketch suffers from a big variance and thus a high

estimation error. To reduce the variance, researchers use multiple counters and take the median

number as the estimation, at the cost of low throughput. Based on the AGMS sketch, the Fast-AGMS

sketch [15] uses multiple hash functions to locate the counters to update, which significantly

accelerates the insertion operation. The Count-Min sketch consists of an array of counters and is

associated with multiple hash functions. It only increments the hashed counters when inserting

an item. The inner-product is estimated by adding up the products of the corresponding counters

of two Count-Min sketches. These algorithms are designed as universal algorithms which are

capable of the inner-product estimation for data streams of various data distributions. However,

in the scenarios of real data, their accuracy is usually poor because the real data often obeys

unbalanced distribution. Real data usually consists of a few frequent items and many infrequent

items. Hash collisions involving frequent items worsen the accuracy of inner-product estimation a

lot. The Skimmed sketch [23] and the Red sketch [25] propose to estimate the inner-product by

estimating the inner-product of frequent items and infrequent items separately. However, they

require extensive computation to find frequent items before estimating the inner-product and need

1
We use “item” to represent an element in a data stream. A data stream is made of many items, and each item could appear

more than once. For example, the item can be a 5-tuple in network measurement or a value from a database table.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 81. Publication date: May 2023.

JoinSketch: A Sketch Algorithm for Accurate and Unbiased Inner-Product Estimation 81:3

𝒆𝒆𝟏𝟏:1𝐾𝐾 𝒆𝒆𝟐𝟐:1𝐾𝐾 𝒆𝒆𝟑𝟑: 1

𝒆𝒆𝟒𝟒: 1 𝒆𝒆𝟔𝟔: 1𝒆𝒆𝟓𝟓: 1

2𝐾𝐾 1 1 1 1

(a) Hash collisions between frequent

items lead to great error.

𝒆𝒆𝟏𝟏:1𝐾𝐾 𝒆𝒆𝟐𝟐:1𝐾𝐾 𝒆𝒆𝟑𝟑: 1

𝒆𝒆𝟒𝟒: 1 𝒆𝒆𝟔𝟔: 1𝒆𝒆𝟓𝟓: 1

1𝐾𝐾 1 1 11001

(b) Hash collisions between frequent

items and infrequent items lead to rel-

atively big error.

𝒆𝒆𝟏𝟏:1𝐾𝐾 𝒆𝒆𝟐𝟐:1𝐾𝐾 𝒆𝒆𝟑𝟑: 1

𝒆𝒆𝟒𝟒: 1 𝒆𝒆𝟔𝟔: 1𝒆𝒆𝟓𝟓: 1

1𝐾𝐾 1𝐾𝐾 2 1 1

(c) Hash collisions between infrequent

items lead to small error, which is ac-

ceptable.

Fig. 1. Types of Hash Collisions.

to get all item IDs in advance, which means these solutions are not one-pass and not practical

consequently.

We propose JoinSketch to provide accurate, fast, and unbiased inner-product estimation for

data streams. JoinSketch is based on a key observation that the real data often obeys unbalanced

distribution such as Zipf [3, 43]. To take advantage of the natural characteristic of real data, we

design JoinSketch to distinguish frequent items from the whole data and record them separately

from infrequent items to improve accuracy.

Real data often obeys unbalanced distribution and is high-skewed in many scenarios. Most

data items are infrequent, while only a few data items are very frequent. The mixture of frequent

items and infrequent items is the key resource of the estimation error because the error of the

inner-product estimation will be huge if hash collisions, especially the ones between frequent items

and hash collisions between frequent items and infrequent items occur. The hash collisions can

be classified into 3 types, (a) hash collisions between frequent items, (b) hash collisions between

frequent items and infrequent items, and (c) hash collisions between infrequent items. Different

types of hash collisions account for the inner-product estimation error to different extents. We

illustrate how different types of hash collisions affect the inner-product estimation in Figure 1.

Let’s consider a data stream 𝐹 and it consists of 6 distinct items. The frequency vector of 𝐹 is

𝑓 = (𝑓1, 𝑓2, ..., 𝑓6) = (1000, 1000, 1, 1, 1, 1) where 𝑓𝑖 represents the frequency of 𝑖-th item 𝑒𝑖 . We

take the Count-Min sketch with 5 counters and one hash function as an example. For brevity and

convenience, we consider inner-product between 𝐹 and itself. The true value of the inner-product

is 𝐽 = 𝑓 ⊙ 𝑓 = 2, 000, 004. As shown in Figure 1(a), type (a) hash collisions lead to a large error,

frequent items 𝑒1 and 𝑒2 are over-estimated by 1000, and the inner-product is 𝐽𝑎 = 4, 000, 004, which

is about two times as the true value. As shown in Figure 1(b), type (b) hash collisions bring big error

to the frequency estimation of the infrequent item 𝑒4 because 𝑒4 is hashed to the same counter as

the frequent item 𝑒2. The estimated frequency of 𝑒4 is 1001, which is 1000 times larger than its true

frequency. The inner-product estimation is 𝐽𝑏 = 2, 002, 004. Figure 1(c) is an ideal situation where

there is only a type (c) hash collision between two infrequent items 𝑒3 and 𝑒5. The estimated value of

inner-product is 𝐽𝑐 = 2, 000, 006. Type (c) hash collisions lead to very small errors in inner-product

estimation, which is acceptable.

JoinSketch consists of three components: the frequent part, the medium part and the infrequent

part. The frequent part is a hash table used to record frequent items accurately because the frequent

items are few yet important. The infrequent part is a Fast-AGMS sketch used to record infrequent

items. The infrequent part only costs a small amount of memory since the frequency of items in

infrequent part is so low that we can use small counters in infrequent part. For example, we can use

only 8-bit counters in the infrequent part. The medium part is the key component of JoinSketch. It

distinguishes frequent items on the basis of item frequency. JoinSketch firstly inserts an item to the

medium part temporarily. If it grows up to exceed a predefined threshold 𝑇 , it will be recorded in

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 81. Publication date: May 2023.

81:4 Feiyu Wang, Qizhi Chen, Yuanpeng Li, Tong Yang, Yaofeng Tu, Lian Yu, and Bin Cui

the frequent part as a frequent item. Otherwise, it is likely to be eliminated to the infrequent part

as an infrequent item if there is no room for new-come items in the medium part.

JoinSketch stores items separately in three components. For every component of JoinSketch,

we query the estimation of partial inner-product between it and every component of another

JoinSketch which is constructed from another data stream. Thus, the inner-product can be derived

from nine pieces (see details in Section 3.3). It is notable that the frequent part and the medium

part record the frequency with no error. The infrequent part is a Fast-AGMS sketch and provides

unbiased inner-product estimation. Combining the above two characteristics, it can be proved that

JoinSketch provides unbiased inner-product estimation (see details in Section 4.1).

The advantages of JoinSketch over existing solutions are twofold. On the one hand, by separating

frequent items and infrequent items, we improve the accuracy by reducing hash collisions. To be

specific, we totally eliminate type (a) hash collisions and type (b) hash collisions because frequent

items are recorded in the frequent part. On the other hand, since the frequencies of items in the

infrequent part are small, we can use smaller counters than existing sketches, which means more

counters under the same memory usage. More counters lead to fewer type (c) hash collisions

between infrequent items. To sum up, JoinSketch improves the accuracy by reducing all of the 3

types of hash collisions simultaneously.

The experimental results show that the error of JoinSketch is 10 times on average smaller than

the state-of-the-art on high-skewed datasets. On datasets with little skewness, JoinSketch can still

perform better than existing algorithms. The code is open-sourced at Github [2].

Key Contributions:
• We propose JoinSketch based on the idea of separating frequent items and infrequent items to

improve the accuracy of the inner-product estimation.

• We theoretically prove that the estimation given by JoinSketch is unbiased and we give a mathe-

matical analysis of the variance of the estimation.

• We conduct extensive experiments to evaluate the performance of JoinSketch on various synthetic

and real-world datasets. The results show that on high-skewed datasets, the error of JoinSketch

is 10 times on average smaller than the state-of-the-art.

2 BACKGROUND
In this section, we first present the definition of the inner-product estimation, then introduce the

well-known AGMS and Fast-AGMS sketch, which are the basis of our JoinSketch.

2.1 Problem Definition
Let 𝐹 be a data stream with 𝑆 items and 𝐺 be another data stream. We use 𝑒𝑖 to represent a data

item in a data stream. Assume 𝐷 is the domain of all items. |𝐷 | = 𝑁 and 𝐷 = {𝑒𝛽1 , ..., 𝑒𝛽𝑖 , ..., 𝑒𝛽𝑁 }.
𝐹 = [𝑒1, ..., 𝑒𝑖 , ..., 𝑒𝑆], where each item 𝑒𝑖 belongs to 𝐷 . Note that items in 𝐷 are distinct, and items

in 𝐹 or 𝐺 may not be. For the data stream 𝐹 , we define the frequency vector 𝑓 = (𝑓1, ..., 𝑓𝑖 , ..., 𝑓𝑁)
where 𝑓𝑖 represents the frequency of the item 𝑒𝛽𝑖 . Similarly, we have the frequency vector of𝐺 , and

𝑔 = (𝑔1, ..., 𝑔𝑖 , ..., 𝑔𝑁). The inner-product of two data streams 𝐹 and 𝐺 is defined as

𝐽 = 𝑓 ⊙ 𝑔 =

𝑁∑︁
𝑖=1

𝑓𝑖 · 𝑔𝑖 . (1)

Join predicate between 𝐹 and 𝐺 outputs all tuples (𝑒𝑖 , 𝑒 𝑗) where 𝑒𝑖 = 𝑒 𝑗 and 𝑒𝑖 ∈ 𝐹, 𝑒 𝑗 ∈ 𝐺 . The
inner-product is equivalent to the join size.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 81. Publication date: May 2023.

JoinSketch: A Sketch Algorithm for Accurate and Unbiased Inner-Product Estimation 81:5

2.2 Sketch-Based Inner-product Estimation
Sketches are a variety of probabilistic data structures to approximate some statistical characteristics

of big data. Sketch algorithms are widely used in big data scenarios, especially in high-speed data

stream processing and analyzing. The AGMS sketch[4, 5] and Fast-AGMS sketch [15] are typical

sketch algorithms for the task of inner-product estimation.

2.2.1 AGMS Sketches. The AGMS sketch [4, 5] is the first sketch-based algorithm for inner-product

estimation. An AGMS sketch consists of only a single counter 𝑠𝑘 (𝐹) that summarizes all of the

frequency information of a data stream. The AGMS sketch is associated with 𝜉 , a family of {+1,−1}
random variables and 4-wise independent. For every item 𝑒𝑖 in data stream 𝐹 = [𝑒1, 𝑒2, ..., 𝑒𝑆], the
AGMS sketch first calculates 𝜉 (𝑒𝑖) and then add it to its single counter. The sketch counter 𝑠𝑘 (𝐹)
can be calculated as follows:

𝑠𝑘 (𝐹) =
∑︁
𝑒𝑖 ∈𝐹

𝜉 (𝑒𝑖). (2)

The standard technique to estimate the inner-product is to construct AGMS sketches for data

streams 𝐹 and 𝐺 , respectively, with the same random function 𝜉 . The inner-product of data stream

𝐹 and 𝐺 can be estimated as:

𝐽 = 𝐸𝑠𝑡 (𝐽) = 𝑠𝑘 (𝐹) × 𝑠𝑘 (𝐺). (3)

The estimator suffers from a big variance. Thus, it is required to use multiple independent single

AGMS sketches to improve accuracy by taking the median or average of these sketches. However,

this technique leads to poor throughput and thus is impractical.

2.2.2 Fast-AGMS Sketches. A Fast-AGMS sketch [15] consists of an array of𝑚 counters. Besides

the random function 𝜉 , the Fast-AGMS sketch has a hash function ℎ, which is used to hash an

item to a random counter. For item 𝑒𝑖 in data stream 𝐹 , the Fast-AGMS sketch first calculates ℎ(𝑒𝑖)
and updates the ℎ(𝑒𝑖)%𝑚-th counter (denoted as 𝑠𝑘 (𝐹) [ℎ(𝑒𝑖)%𝑚]) by adding 𝜉 (𝑒𝑖). The Fast-AGMS

sketch is capable to estimate the frequency of 𝑒𝑖 by the product 𝑠𝑘 (𝐹) [ℎ(𝑒𝑖)%𝑚] × 𝜉 (𝑒𝑖). The hash
functionℎ helps reduce the number of counters to be updated when inserting a new item. Compared

with the AGMS sketch, under the same space usage, the Fast-AGMS sketch has the same variance

as the AGMS sketch but lower update and query time complexity.

As for inner-product estimation, the Fast-AGMS sketches for data streams 𝐹 and𝐺 are constructed

in advance with the same hash function ℎ and random function 𝜉 . The inner-product estimation is

the summation of the product of corresponding counters of the two Fast-AGMS sketches. In other

words, if we view the Fast-AGMS sketch as a column vector, the estimation can be written as:

𝐽 = 𝐸𝑠𝑡 (𝐽) =
𝑚∑︁
𝑖=1

𝑠𝑘 (𝐹) [𝑖] × 𝑠𝑘 (𝐺) [𝑖] =
−−−−→
𝑠𝑘 (𝐹)T ·

−−−−→
𝑠𝑘 (𝐺). (4)

The Fast-AGMS sketch also suffers from hash collisions. If two or more items with high frequency

are hashed into the same counter, the accuracy of the inner-product estimation will be poor. In

practice, researchers usually use the median estimation of multiple Fast-AGMS sketches to improve

accuracy.

3 JOINSKETCH
In this section, we first present the rationale of JoinSketch. Then we describe the data structure and

operations of JoinSketch. After that, we show how JoinSketch estimates the inner-product of two

data streams. Finally, we present some optimization techniques for JoinSketch. We list the symbols

used frequently in this paper in Table 1.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 81. Publication date: May 2023.

81:6 Feiyu Wang, Qizhi Chen, Yuanpeng Li, Tong Yang, Yaofeng Tu, Lian Yu, and Bin Cui

Table 1. Symbols Frequently Used in This Paper.

Symbols Meaning
𝐹,𝐺 a data stream

𝑓 , 𝑔 a frequency vector

𝐷 the domain of items and 𝐷 = {𝑒𝛽1 , 𝑒𝛽2 , ..., 𝑒𝛽𝑁 }
𝑁 the cardinality of 𝐷 and 𝑁 = |𝐷 |
𝑓𝑖 the frequency of 𝑖-th item 𝑒𝛽𝑖
𝑇 a predefined threshold for frequent items

𝐽 the inner-product of 𝐹 and 𝐺

𝐽 the estimated inner-product of 𝐹 and 𝐺

𝑀𝑃 [𝑖] the 𝑖𝑡ℎ bucket in the medium part

𝐵 [𝑖] [𝑒] .𝑐𝑜𝑢𝑛𝑡𝑒𝑟 the counter of item 𝑒 if 𝑒 exists in 𝐵 [𝑖]
𝐻 (.) the hash function used in the frequent part

𝐻𝑚 (.) the hash function used in the medium part

ℎ𝑖 (.) the 𝑖𝑡ℎ hash function in the infrequent part

𝜉𝑖 (.) the 𝑖𝑡ℎ random function in the infrequent part

𝒉𝒉𝟏𝟏(𝒆𝒆)

𝒉𝒉𝟐𝟐(𝒆𝒆)

𝒉𝒉𝟑𝟑(𝒆𝒆)

Infrequent Part

Frequent Part

𝑯𝑯(𝒆𝒆)

Frequent
item

Infrequent
item

Medium Part
(𝒆𝒆𝟗𝟗,𝟏𝟏)

(𝒆𝒆𝟕𝟕,𝟐𝟐) (𝒆𝒆𝟐𝟐,𝟗𝟗 + 𝟏𝟏)

(𝒆𝒆𝟔𝟔,𝟑𝟑) 𝒆𝒆𝟒𝟒,𝟏𝟏

… …

(𝒆𝒆𝟏𝟏,𝟏𝟏𝟏𝟏 + 𝟏𝟏)

(𝒆𝒆𝟓𝟓,𝟐𝟐𝟐𝟐) (𝒆𝒆𝟐𝟐,𝟏𝟏𝟏𝟏)

(𝒆𝒆𝟖𝟖,𝟏𝟏𝟏𝟏)

… …

𝒆𝒆𝟒𝟒

𝒆𝒆𝟐𝟐

𝟎𝟎 −𝟏𝟏 𝟏𝟏𝟓𝟓 … 𝟗𝟗 𝟎𝟎

−𝟐𝟐 𝟎𝟎 𝟕𝟕 … 𝟏𝟏𝟓𝟓 𝟎𝟎

𝟎𝟎 𝟑𝟑 −𝟑𝟑 … 𝟏𝟏𝟏𝟏 𝟏𝟏

𝒆𝒆𝟏𝟏

(𝒆𝒆𝟑𝟑,𝟏𝟏)

Clear!

𝒆𝒆𝟑𝟑 𝒆𝒆𝟐𝟐
𝑯𝑯𝒎𝒎(𝒆𝒆)

Fig. 2. Data Structure of JoinSketch.

3.1 Rationale of JoinSketch
The key idea of JoinSketch is to distinguish frequent items and infrequent items from mixed data

to improve the accuracy of inner-product estimation. JoinSketch consists of three components: the

infrequent part, the frequent part, and the medium part. The infrequent part is a Fast-AGMS sketch

used to record infrequent items. The frequent part is a hash table used to record frequent items. The

medium part is the key component of JoinSketch, which separates items based on their frequency.

It is used to distinguish frequent items from all data items. We organize these three components as

shown in Figure 2. When inserting an item, JoinSketch first accumulates it in the medium part. If

the frequency of an item grows big enough and exceeds a predefined threshold 𝑇 , it is supposed to

be a frequent item and be stored in the frequent part. Otherwise, it is supposed to be stored in the

medium part or the infrequent part if there is no room for new-come items in the medium part.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 81. Publication date: May 2023.

JoinSketch: A Sketch Algorithm for Accurate and Unbiased Inner-Product Estimation 81:7

3.2 Data Structure and Operations
3.2.1 Data Structure. As shown in Figure 2, the data structure of JoinSketch consists of three

components, including the frequent part, the medium part and the infrequent part from top to

bottom.

Frequent part: The frequent part 𝐹𝑃 is a hash table of 𝑘 buckets and is associated with a hash

function 𝐻 (.). Each bucket of the frequent part consists of 𝑐 entries. Each entry stores an item and

its current frequency.

Infrequent part: The infrequent part 𝐼𝐹𝑃 is a Fast-AGMS sketch. Specifically, the infrequent part

consists of 𝑑 arrays (𝐼𝐹𝑃1,𝐼𝐹𝑃2,· · · , 𝐼𝐹𝑃𝑑). Each array consists of𝑤 counters and is associated with

a hash function ℎ𝑖 (.) and a random function 𝜉𝑖 (.).
Medium part: The medium part𝑀𝑃 is the key component of JoinSketch. As shown in Figure 2, the

data structure of the medium part is an array of 𝑙 buckets, and each bucket includes𝑚 entries. Each

entry is composed of an item and a counter. The medium part is associated with a hash function

𝐻𝑚 (.).

3.2.2 Operations. JoinSketch supports two operations: inserting an item and looking up the

frequency of an item.

Algorithm 1: Insertion of medium part.

Input: Item 𝑒

1 ℎ ← 𝐻𝑚 (𝑒)
2 if 𝑒 ∈ 𝑀𝑃 [ℎ] then
3 𝑀𝑃 [ℎ] [𝑒] .𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ← 𝑀𝑃 [ℎ] [𝑒] .𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + 1
4 if 𝑀𝑃 [ℎ] [𝑒] .𝑐𝑜𝑢𝑛𝑡𝑒𝑟 < 𝑇 then
5 return

6 else
7 insert ⟨𝑒,𝑀𝑃 [ℎ] [𝑒] .𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ⟩ to 𝐹𝑃

8 clear𝑀𝑃 [ℎ] [𝑒]
9 return

10 else if 𝑀𝑃 [ℎ] is not full then
11 insert ⟨𝑒, 1⟩ to an empty entry of𝑀𝑃 [ℎ]
12 return

13 else
14 𝑦 ← 𝑎𝑟𝑔𝑚𝑖𝑛𝑦 (𝑀𝑃 [ℎ] [𝑦] .𝑐𝑜𝑢𝑛𝑡𝑒𝑟)
15 insert ⟨𝑦,𝑀𝑃 [ℎ] [𝑦] .𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ⟩ to 𝐼𝐹𝑃
16 clear𝑀𝑃 [ℎ] [𝑦] and insert ⟨𝑒, 1⟩ to𝑀𝑃 [ℎ]
17 return

Insertion: When an item 𝑒 is inserted, JoinSketch first checks whether it is stored in the frequent

part. If so, we simply increment its counter in the frequent part. Otherwise, the item will be

inserted into the medium part. The medium part hashes 𝑒 to bucket 𝑀𝑃 [ℎ] using an associated

hash function𝐻𝑚 (.), where ℎ = 𝐻𝑚 (𝑒). There are three different cases according to whether bucket
𝑀𝑃 [ℎ] contains item 𝑒 . The pseudo-code is shown in Algorithm 1.

Case 1 (line 2-9): If bucket 𝑀𝑃 [ℎ] contains item 𝑒 , the counter of item 𝑒 will be increased by 1.

Then we check the updated counter. If the updated frequency of item 𝑒 is less than threshold 𝑇 ,

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 81. Publication date: May 2023.

81:8 Feiyu Wang, Qizhi Chen, Yuanpeng Li, Tong Yang, Yaofeng Tu, Lian Yu, and Bin Cui

the insertion ends. Otherwise, we insert 𝑒 into the frequent part with the current frequency and

remove it from the medium part.

Case 2 (line 10-12): If bucket 𝑀𝑃 [ℎ] does not contain item 𝑒 but there exists at least one empty

entry, we insert item 𝑒 into an empty entry of bucket𝑀𝑃 [ℎ].
Case 3 (line 13-17): If bucket𝑀𝑃 [ℎ] does not contain item 𝑒 and it is full, we need to evict an entry

to make room for item 𝑒 . We select the smallest item 𝑦 in bucket𝑀𝑃 [ℎ]. Item 𝑦 is believed to be an

infrequent item and is then inserted into the infrequent part.

Example I: As shown in Figure 2, the frequent part and the medium part of JoinSketch consist of

multiple buckets. Each bucket consists of 2 entries. The infrequent part is a Fast-AGMS sketch with

three arrays. The threshold of frequent item 𝑇 = 10. When inserting item 𝑒1 to JoinSketch, we first

check whether 𝑒1 is in the frequent part: we compute hash function 𝐻 (𝑒1) to locate the 2
𝑛𝑑

bucket

in the frequent part. Since 𝑒1 is in the bucket, we simply increment the counter by 1 to 16.

Example II: When inserting item 𝑒2 to JoinSketch, 𝑒2 is not in the frequent part. Therefore, we

insert it to the medium part: we compute hash function ℎ𝑚 (𝑒2) to locate the 2
𝑛𝑑

bucket in the

medium part. 𝑒2 is in the bucket, therefore, we increment the corresponding counter by 1 to 10.

After that, we compare the counter with the threshold 𝑇 . 10 ⩾ 𝑇 , therefore, we insert 𝑒2 with

frequency 10 to the frequent part, and remove it from the medium part.

Example III: When inserting item 𝑒3 to JoinSketch, 𝑒3 is not in the frequent part. Therefore, we

insert it to the medium part: we locate it to the 3
𝑟𝑑

bucket. The bucket is full, therefore, we remove

the least frequent item 𝑒4 from the bucket and insert it into the infrequent part. Finally, we insert

𝑒3 with frequency 1 into the bucket.

Discussion on the data structure: Our solution is a 3-part design. It is also feasible to combine

the frequent part and medium part into one and get a 2-part design. Indeed, the 2-part design is

simple and easy to deploy. 3-part design is a little more complicated but fine-grained. The frequent

part is supposed to store items with a larger frequency than the medium part. Meanwhile, we use

bigger counters in the frequent part and smaller counters in the medium part, which can further

save memory usage. In Section 3.4.3, we present an optimization technique using fingerprints,

which can also benefit from the 3-part design.

Algorithm 2: Lookup of JoinSketch

Input: Item 𝑒

Output: The frequency estimation of item 𝑒

1 𝑟𝑒𝑡 ← 0

2 if 𝑒 ∈ 𝐹𝑃 [𝐻 (𝑒)] then
3 𝑟𝑒𝑡+ = 𝐹𝑃 [𝑒] .𝑐𝑜𝑢𝑛𝑡𝑒𝑟
4 else if 𝑒 ∈ 𝑀𝑃 [𝐻𝑚 (𝑒)] then
5 𝑟𝑒𝑡+ = 𝑀𝑃 [𝐻𝑚 (𝑒)] [𝑒] .𝑐𝑜𝑢𝑛𝑡𝑒𝑟
6 for 𝑖 = 1→ 𝑑 do
7 𝑆 [𝑖] ← 𝐼𝐹𝑃𝑖 [ℎ𝑖 (𝑒)] × 𝜉𝑖 (𝑒)
8 𝑟𝑒𝑡+ =𝑚𝑒𝑑𝑖𝑎𝑛1≤𝑖≤𝑑 (𝑆 [𝑖])
9 return 𝑟𝑒𝑡

Lookup (frequency estimation): Besides the inner-product estimation (see details in Section

3.3), one can use JoinSketch to estimate an item’s frequency. The pseudo-code for lookup operation

is shown in Algorithm 2. JoinSketch initialize 𝑟𝑒𝑡 with 0 in the beginning (line 1). To look up the

frequency of an item 𝑒 , JoinSketch first checks whether item 𝑒 exists in the frequent part or the

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 81. Publication date: May 2023.

JoinSketch: A Sketch Algorithm for Accurate and Unbiased Inner-Product Estimation 81:9

medium part (line 2-5). If so, add the corresponding counter’s value to 𝑟𝑒𝑡 . Afterwards, JoinSketch

will look up 𝑒 in the infrequent part. The Infrequent part is associated with 𝑑 hash functions.

JoinSketch locates these 𝑑 hashed counters and then adds the median value of the counters to 𝑟𝑒𝑡

(line 6-8). JoinSketch returns 𝑟𝑒𝑡 as the frequency estimation of item 𝑒 .

Discussion on Lookup: Note that we always query the infrequent part for frequency estimation.

The reason is as follows. For an arbitrary item 𝑒 , 1) if it does not exist in the frequent part or the

medium part, we can tell that all of its instances are recorded in the infrequent part. In this case,

JoinSketch only needs to look up its frequency in the infrequent part. 2) If 𝑒 exists in the frequent

part or the medium part, however, we are faced with a more complicated situation. The counter

value will be the partial frequency of 𝑒 if some instances of 𝑒 have been evicted to the infrequent

part before it grows into a frequent item. 2.1) If JoinSketch never evicts 𝑒 into infrequent part, the

counter value should be the true value of 𝑒’s frequency. 2.2) Otherwise, it is an under estimation.

Because we do not use an additional flag to indicate whether the above eviction occurs to keep

the data structure concise, we choose to always look up the infrequent part to obtain unbiased

frequency estimation. In addition, it is also feasible to only return the counter value as the estimated

frequency and we compare the accuracy of these two methods in Section 6.

Discussion on frequency estimation and inner-product estimation: Indeed, JoinSketch is a

frequency sketch that does inner-product estimation. Using current evaluation metrics, nevertheless,

we observe that accurate frequency estimation does not always lead to accurate inner-product

estimation. Prior work usually evaluates the performance of sketch algorithms using metrics of

AAE (absolute average error) and ARE (average relative error). Unfortunately, these metrics can not

reflect the accuracy for inner-product estimation of sketches. An example is as follows. Consider

we have two data streams 𝐹 and𝐺 in which there are two items 𝑒1 and 𝑒2. The frequency vectors of

𝐹 and𝐺 are 𝑓 = (10000, 10) and 𝑔 = (10001, 11), respectively. Assume the sketch gives an error-free

estimation 𝑔 = 𝑔 while the estimation of 𝑓 is not error-free.

• Example I: Consider two cases and the frequency estimation is
ˆ𝑓𝑐𝑎𝑠𝑒1 = (11000, 11), ˆ𝑓𝑐𝑎𝑠𝑒2 =

(10001, 1010). The AAE of both the cases is
1000+1
10000+10 . The inner-product estimation is 𝐽 = ˆ𝑓𝑐𝑎𝑠𝑒1 ⊙

𝑔 = 110, 011, 121 for case 1 and 𝐽 = ˆ𝑓𝑐𝑎𝑠𝑒2 ⊙ 𝑔 = 100, 031, 111 for case 2. The same AAE for

frequency estimation leads to inner-product estimation in sharp contrast.

• Example II: Consider two cases and the frequency estimation is
ˆ𝑓𝑐𝑎𝑠𝑒1 = (11000, 11), ˆ𝑓𝑐𝑎𝑠𝑒2 =

(10000, 12). The ARE of both the cases is 10%. The inner-product estimation is 𝐽 = ˆ𝑓𝑐𝑎𝑠𝑒1 ⊙ 𝑔 =

110, 011, 121 for case 1 and 𝐽 = ˆ𝑓𝑐𝑎𝑠𝑒2 ⊙ 𝑔 = 100, 010, 132 for case 2. The same ARE for frequency

estimation leads to inner-product estimation in sharp contrast.

The above example shows that accurate frequency estimation does not indicate the accurate inner-

product estimation. It is still an open question to design new appropriate metrics. We get an insight

that we need to obtain a higher accuracy for frequent items than infrequent items, which motivates

us to separate frequent items from infrequent items. JoinSketch is proposed based on the separation

of items.

3.3 Inner-product Estimation
Given two data streams 𝐹 and 𝐺 , we first construct JoinSketch for them, i.e., we insert all items

in 𝐹 and 𝐺 into JoinSketch respectively. We name them 𝐽𝑜𝑖𝑛𝑆𝑘𝑒𝑡𝑐ℎ𝐹 and 𝐽𝑜𝑖𝑛𝑆𝑘𝑒𝑡𝑐ℎ𝐺 . As shown

in Figure 2, items are stored in the frequent part, the medium part and the infrequent part. Thus,

the inner-product estimation can be obtained by adding up the inner-product of nine pieces,

including (1) frequent-frequent, (2) frequent-medium, (3) frequent-infrequent, (4) medium-frequent,

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 81. Publication date: May 2023.

81:10 Feiyu Wang, Qizhi Chen, Yuanpeng Li, Tong Yang, Yaofeng Tu, Lian Yu, and Bin Cui

(5) medium-medium, (6) medium-infrequent, (7) infrequent-frequent, (8) infrequent-medium, and

(9) infrequent-infrequent.

Formally, we define frequent vector 𝑓𝐹 = (𝑓𝐹1, 𝑓𝐹2, ..., 𝑓𝐹𝑁) where 𝑓𝐹𝑖 ≥ 𝑇 for 𝑖 = 1, ..., 𝑁 , medium

vector 𝑓𝑀 = (𝑓𝑀1, 𝑓𝑀2, ..., 𝑓𝑀𝑁) where 𝑓𝑀𝑖 < 𝑇 and infrequent vector 𝑓𝐼 = (𝑓𝐼1, 𝑓𝐼2, ..., 𝑓𝐼𝑁). Let

the frequent vector 𝑓𝐹 be the partial frequency vector of what has been recorded in the frequent

part. Let the medium vector 𝑓𝑀 be the partial frequency vector of what has been recorded in the

medium part. Note that the 𝑓𝐹 is not the frequency vector of the frequent items, but represents the

frequency vector of the instances recorded in the frequent part. For example, if an item 𝑒𝛽𝑖 is never

evicted to the infrequent part before it grows to be a frequent item, 𝑓𝐹𝑖 will be the true value of the

frequency of 𝑒𝛽𝑖 . We have 𝑓𝐹𝑖 = 𝑓𝑖 , 𝑓𝑀𝑖 = 0 and 𝑓𝐼𝑖 = 0. Once JoinSketch evicts 𝑒𝛽 𝑗
to the infrequent

part, some instances of this items are recorded in the infrequent part. In this case, 𝑓𝐹 𝑗 < 𝑓𝑗 and

𝑓𝐼 𝑗 > 0. Similarly, the 𝑓𝑀 is the frequency vector of the instances which are recorded in the medium

part. Since an instance of any item is recorded in one and only one part of JoinSketch, we have

𝑓 = 𝑓𝐹 + 𝑓𝑀 + 𝑓𝐼 and 𝑔 = 𝑔𝐹 + 𝑔𝑀 + 𝑔𝐼 . The inner-product of 𝐹 and 𝐺 can be calculated by

𝐽 = 𝑓 ⊙ 𝑔 = (𝑓𝐹 + 𝑓𝑀 + 𝑓𝐼) ⊙ (𝑔𝐹 + 𝑔𝑀 + 𝑔𝐼)
= 𝑓𝐹 ⊙ 𝑔𝐹 + 𝑓𝐹 ⊙ 𝑔𝑀 + 𝑓𝐹 ⊙ 𝑔𝐼
+ 𝑓𝑀 ⊙ 𝑔𝐹 + 𝑓𝑀 ⊙ 𝑔𝑀 + 𝑓𝑀 ⊙ 𝑔𝐼
+ 𝑓𝐼 ⊙ 𝑔𝐹 + 𝑓𝐼 ⊙ 𝑔𝑀 + 𝑓𝐼 ⊙ 𝑔𝐼
= 𝐽𝐹𝐹 + 𝐽𝐹𝑀 + 𝐽𝐹𝐼 + 𝐽𝑀𝐹 + 𝐽𝑀𝑀 + 𝐽𝑀𝐼 + 𝐽𝐼𝐹 + 𝐽𝐼𝑀 + 𝐽𝐼 𝐼 .

(5)

These nine addends in Equation 5 correspond to the nine pieces above. JoinSketch estimates the

inner-product by estimating the nine pieces respectively. For piece (1) 𝐽𝐹𝐹 , JoinSketch compares

every item recorded in the frequent part of 𝐽𝑜𝑖𝑛𝑆𝑘𝑒𝑡𝑐ℎ𝐹 with the one recorded in the frequent

part of 𝐽𝑜𝑖𝑛𝑆𝑘𝑒𝑡𝑐ℎ𝐺 . For the same item, JoinSketch multiplies the corresponding counters and

sums up all products. We estimate (2) 𝐽𝐹𝑀 (4) 𝐽𝑀𝐹 (5) 𝐽𝑀𝑀 using the same method. For piece (9)

𝐽𝐼 𝐼 , JoinSketch sums up all of the multiplications of corresponding counters of the infrequent part,

which is the same as the Fast-AGMS sketch. JoinSketch traverses the frequent parts to estimate

(3) 𝐽𝐹𝐼 and (7) 𝐽𝐼𝐹 . For each item in the frequent part of 𝐽𝑜𝑖𝑛𝑆𝑘𝑒𝑡𝑐ℎ𝐹 , we look up the estimated

frequency of the item in the infrequent part of 𝐽𝑜𝑖𝑛𝑆𝑘𝑒𝑡𝑐ℎ𝐺 and then estimate (3) 𝐽𝐹𝐼 . Similarly,

we traverse the frequent part of 𝐽𝑜𝑖𝑛𝑆𝑘𝑒𝑡𝑐ℎ𝐺 and then get (7) 𝐽𝐼𝐹 . The same method is applied to

estimate (6) 𝐽𝑀𝐼 and (8) 𝐽𝐼𝑀 . By adding the results of the above nine pieces, we get the inner-product

estimation of data stream 𝐹 and data stream 𝐺 .

3.4 Optimizations
3.4.1 Extension of Frequent Part. Ideally, the size of the frequent part should match the number of

frequent items. If the size of frequent part is too small, a number of frequent items may be lost; if

the size of frequent part is too large, memory will be wasted. Estimating the number of frequent

items in advance is difficult, so we decide to dynamically extend the size of the frequent part. The

method is borrowed from ElasticSketch [54]. If a bucket in the frequent part is full, we copy the

frequent part and merge the frequent part and the copied one together as the new frequent part.

Suppose the old frequent part contains 𝑘 buckets. The new one contains 2𝑘 buckets, and thus we

change the hash function from 𝐻 (.)%𝑘 to 𝐻 (.)%(2𝑘). After the extension, half of the items should

be removed. The removal operation can be done incrementally.

3.4.2 Using SIMD Instructions. The medium part and the frequent part consist of 𝑙 buckets and

each bucket consists of𝑚 entries. When inserting an item, it is hashed into a bucket. Afterward,

we need to scan all entries in this bucket to determine whether or not the item exists in this bucket,

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 81. Publication date: May 2023.

JoinSketch: A Sketch Algorithm for Accurate and Unbiased Inner-Product Estimation 81:11

which is costly. To improve insertion performance, we use SIMD (Single Instruction Multiple Data)

instructions to scan a specific hashed bucket [44, 60]. With SIMD, we can scan and compare multiple

entries with a single instruction. In order to make JoinSketch compatible with SIMD, we set the

number of entries𝑚 = 4 or𝑚 = 8.

3.4.3 Fingerprint. We use fingerprints instead of the full item key in order to save memory usage.

The fingerprint of an item 𝑒 is a fixed-length hash value of the item. For example, we can use a hash

function 𝐻𝑓 𝑝 to calculate the fingerprint and the fingerprint of 𝑒 is 𝐻𝑓 𝑝 (𝑒). We use the fingerprint

to save memory footprint if the item key is long. The usage of fingerprint, however, is likely to bring

about fingerprint collisions which would downgrade the accuracy of inner-product estimation.

Hence, we use longer fingerprints in the frequent part to avoid fingerprint collisions as much as

possible. We set the length of fingerprint in the frequent part 𝐿𝐹 = 32. And we set the length in the

medium part 𝐿𝑀 = 22. The reason for using 22-bit fingerprint is that in the experiment we find that

10-bit counters is big enough for the medium part, and the remaining 22 bits of the 32-bit variable

can be used as the fingerprint.

3.4.4 Picking the threshold𝑇 . In terms of picking the threshold𝑇 , one feasible method is to initialize

𝑇 with a moderate value and adjust it according to the status of the frequent part. The initial value

of 𝑇 can be set according to the total number of items and the estimated number of distinct items

(if available). For example, one can use the average frequency or a small portion of all items as

the initial value. JoinSketch checks the number of items in the frequent part periodically. If the

number of items in the frequent part is small (e.g. ≤ 𝑟𝑧 · 𝑘𝑐 , 𝑟 is a constant, 𝑧 is the number of items

inserted to JoinSketch and 𝑘𝑐 is the total number of entries in the frequent part), it suggests that the

threshold 𝑇 is too high to find the frequent items and JoinSketch will lower the threshold 𝑇 . If the

frequent part is extended frequently, which indicates that many items which are not so frequent

are inserted to the frequent part, JoinSketch will take a higher𝑇 . In this way, JoinSketch will take a

proper threshold value to separate frequent and infrequent items.

3.5 Extension to Multi-Way Joins
To show how to extend JoinSketch to multi-way join size estimation, we first introduce the concept

of attributes. An item in data streams may consist of several attributes. Let 𝑒𝑖 .𝐴 𝑗 be the attribute 𝐴 𝑗

of the item 𝑒𝑖 , and let 𝐹 .𝐴 𝑗 be the attribute 𝐴 𝑗 of the data stream 𝐹 . An example of multi-way join

is like

𝐹 Z 𝐺 Z 𝐻 where 𝐹 .𝐴1 = 𝐺.𝐴1 ∧𝐺.𝐴2 = 𝐻.𝐴2 (6)

The typical work for multi-way joins is Compass [31], which uses multi-dimensional Fast-AGMS

sketches. Essentially, JoinSketch is KV tables (the frequent part and the medium part) and a Fast-

AGMS sketch (the infrequent part). The infrequent part perfectly fits into Compass. As for the

KV tables, we modify them for multi-way join as follows. We replace the item key in the frequent

part and the medium part with multiple item keys which are involved in the join. For example, we

record 𝐴1 for data stream 𝐹 , 𝐴2 for data stream 𝐻 , and both 𝐴1 and 𝐴2 for data stream 𝐺 . We can

obtain the inner-product estimation in the same way as 2-way join.

4 THEORETICAL ANALYSIS
4.1 Unbiasedness of JoinSketch
Theorem 1. The inner-product estimation of two data streams given by the standard version of

JoinSketch is unbiased.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 81. Publication date: May 2023.

81:12 Feiyu Wang, Qizhi Chen, Yuanpeng Li, Tong Yang, Yaofeng Tu, Lian Yu, and Bin Cui

Proof. Suppose 𝑓 and𝑔 are frequency vectors of two data streams 𝐹 and𝐺 . 𝐽 is the inner-product

estimation given by JoinSketch and the true value of the inner-product is 𝐽 . According to Section

3.3, the inner-product estimation is obtained by

𝐽 = ˆ𝐽𝐹𝐹 + ˆ𝐽𝐹𝑀 + ˆ𝐽𝐹𝐼 + ˆ𝐽𝑀𝐹 + ˆ𝐽𝑀𝑀 + ˆ𝐽𝑀𝐼 + ˆ𝐽𝐼𝐹 + ˆ𝐽𝐼𝑀 + ˆ𝐽𝐼 𝐼 . (7)

The frequent part and the medium part record a part of all instances of a frequent item with no error

according to their definition, hence we have
ˆ𝑓𝐹 = 𝑓𝐹 , ˆ𝑓𝑀 = 𝑓𝑀 , 𝑔𝐹 = 𝑔𝐹 and ˆ𝑔𝑀 = 𝑔𝑀 . Therefore, we

have

ˆ𝐽𝐹𝐹 = ˆ𝑓𝐹 ⊙ 𝑔𝐹 = 𝑓𝐹 ⊙ 𝑓𝐹 = 𝐽𝐹𝐹

ˆ𝐽𝐹𝑀 = ˆ𝑓𝐹 ⊙ ˆ𝑔𝑀 = 𝑓𝐹 ⊙ 𝑓𝑀 = 𝐽𝐹𝑀

ˆ𝐽𝑀𝐹 = ˆ𝑓𝑀 ⊙ 𝑔𝐹 = 𝑓𝑀 ⊙ 𝑓𝐹 = 𝐽𝑀𝐹

ˆ𝐽𝑀𝑀 = ˆ𝑓𝑀 ⊙ ˆ𝑔𝑀 = 𝑓𝑀 ⊙ 𝑓𝑀 = 𝐽𝑀𝑀 .

(8)

Further, note that

ˆ𝐽𝐹𝐼 = ˆ𝑓𝐹 ⊙ 𝑔𝐼 = 𝑓𝐹 ⊙ 𝑔𝐼
ˆ𝐽𝑀𝐼 = ˆ𝑓𝑀 ⊙ 𝑔𝐼 = 𝑓𝑀 ⊙ 𝑔𝐼
ˆ𝐽𝐼𝐹 = ˆ𝑓𝐼 ⊙ 𝑔𝐹 = ˆ𝑓𝐼 ⊙ 𝑔𝐹
ˆ𝐽𝐼𝑀 = ˆ𝑓𝐼 ⊙ ˆ𝑔𝑀 = ˆ𝑓𝐼 ⊙ 𝑔𝑀 .

(9)

Fast-AGMS gives unbiased estimation for both item frequency and inner-product. Therefore,

E(ˆ𝑓𝐼) = 𝑓𝐼 , E(𝑔𝐼) = 𝑔𝐼 and E(𝐽𝐼 𝐼) = 𝐽𝐼 𝐼 . Hence, the estimation for the remaining five pieces is

unbiased as well. We have that

E(𝐽) = E(ˆ𝐽𝐹𝐹) + E(ˆ𝐽𝐹𝑀) + E(ˆ𝐽𝐹𝐼) + E(ˆ𝐽𝑀𝐹) + E(ˆ𝐽𝑀𝑀)
+ E(ˆ𝐽𝑀𝐼) + E(ˆ𝐽𝐼𝐹) + E(ˆ𝐽𝐼𝑀) + E(ˆ𝐽𝐼 𝐼)
= 𝐽𝐹𝐹 + 𝐽𝐹𝑀 + 𝐽𝐹𝐼 + 𝐽𝑀𝐹 + 𝐽𝑀𝑀 + 𝐽𝑀𝐼 + 𝐽𝐼𝐹 + 𝐽𝐼𝑀 + 𝐽𝐼 𝐼
= 𝐽 .

(10)

Therefore, the estimation given by JoinSketch is unbiased. □

Analysis on optimizations: We present several optimization techniques in Section 3.4. The

extension of the frequent part and using SIMD instructions don’t affect the unbiasedness of the

inner-product estimation. The fingerprint, however, will affect the unbiasedness. We discuss the

issue in Section 4.4.

4.2 Variance of JoinSketch
As mentioned in Section 4.1, JoinSketch provides an unbiased estimation of the inner-product. In

this section, we prove the estimation offered by JoinSketch is of less variance, and thus JoinSketch

improves estimation accuracy compared with prior arts. We start from the variance of the estimation

given by the Fast-AGMS sketch.

Lemma 2. Consider a Fast-AGMS sketch with 𝑛𝐹𝑎𝑠𝑡 counters. The variance of the inner-product
estimation (denoted as ˆ𝐽𝐹𝑎𝑠𝑡) is

𝑉𝑎𝑟 [ˆ𝐽𝐹𝑎𝑠𝑡] ≤ 2| |𝑓 | |2
2
| |𝑔| |2

2
/𝑛𝐹𝑎𝑠𝑡 = 𝐵𝐹𝑎𝑠𝑡 (11)

according to [45] where 𝑓 and 𝑔 is the frequency vector of data streams 𝐹 and 𝐺 .

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 81. Publication date: May 2023.

JoinSketch: A Sketch Algorithm for Accurate and Unbiased Inner-Product Estimation 81:13

Theorem 3. The bound of the variance of inner-product estimation 𝐽 given by JoinSketch satisfies
that

𝑉𝑎𝑟 [𝐽] ≤
(
| |𝑓𝑈 | |22 | |𝑔𝐼 | |22 + ||𝑔𝑈 | |22 | |𝑓𝐼 | |22 + 2| |𝑓𝐼 | |22 | |𝑔𝐼 | |22

)
/𝑛

where 𝑓𝑈 = 𝑓𝐹 + 𝑓𝑀 , 𝑔𝑈 = 𝑔𝐹 + 𝑔𝑀 and 𝑛 is the number of counters in the infrequent part.

Proof. JoinSketch stores the data stream in three components. Note that the frequent part

and the medium part only store the part of all instances of a frequent item with no error. We

can consider the two parts as a whole and thus obtain the inner-product estimation provided by

JoinSketch 𝐽 from

𝐽 = ˆ𝐽𝑈𝑈 + ˆ𝐽𝑈 𝐼 + ˆ𝐽𝐼𝑈 + ˆ𝐽𝐼 𝐼 (12)

where ˆ𝐽𝑈𝑈 = ˆ𝑓𝑈 ⊙ 𝑔𝑈 and 𝑓𝑈 = 𝑓𝐹 + 𝑓𝑀 . Since the 𝑓𝐹 and 𝑓𝑀 are independent of 𝑓𝐼 , the variance of 𝐽

consists of four parts.

𝑉𝑎𝑟 [𝐽] = 𝑉𝑎𝑟 [ˆ𝐽𝑈𝑈] +𝑉𝑎𝑟 [ˆ𝐽𝑈 𝐼] +𝑉𝑎𝑟 [ˆ𝐽𝐼𝑈] +𝑉𝑎𝑟 [ˆ𝐽𝐼 𝐼] . (13)

Since there is no error in frequency vector 𝑓𝐹 and 𝑓𝑀 , ˆ𝐽𝑈𝑈 = 𝐽𝑈𝑈 and the variance of first part is

𝑉𝑎𝑟 [ˆ𝐽𝑈𝑈] = 0. (14)

The variance of the second part ˆ𝐽𝑈 𝐼 can be derived based on the variance of frequency estimation

of the Fast-AGMS sketch. The variance of frequency estimation of the Fast-AGMS sketch is

𝑉𝑎𝑟 [ˆ𝑓𝑖] ≤ ||𝑓 | |22/𝑛 (15)

where 𝑓 is the frequency vector and 𝑛 is the number of counters in the Fast-AGMS sketch. Therefore,

𝑉𝑎𝑟 [ˆ𝐽𝑈 𝐼] = 𝑉𝑎𝑟 [ˆ𝑓𝑈 ⊙ 𝑔𝐼]
= 𝑓𝑈 ⊙ 𝑉𝑎𝑟 [𝑔𝐼] ≤ ||𝑓𝑈 | |22 | |𝑔𝐼 | |22/𝑛.

(16)

The third part ˆ𝐽𝐼𝑈 is symmetric to the second part ˆ𝐽𝑈 𝐼 . The variance of
ˆ𝐽𝐼𝑈 is

𝑉𝑎𝑟 [ˆ𝐽𝐼𝑈] ≤ ||𝑔𝑈 | |22 | |𝑓𝐼 | |22/𝑛. (17)

The fourth part ˆ𝐽𝐼 𝐼 is the estimation from the infrequent part which is a Fast-AGMS sketch. The

formula of the fourth part’s variance is

𝑉𝑎𝑟 [ˆ𝐽𝐼 𝐼] ≤ 2| |𝑓𝐼 | |22 | |𝑔𝐼 | |22/𝑛. (18)

Substituting the above results into Equation 13, the bound of variance of the inner-product estima-

tion given by JoinSketch is

𝑉𝑎𝑟 [𝐽] =𝑉𝑎𝑟 [ˆ𝐽𝑈𝑈] +𝑉𝑎𝑟 [ˆ𝐽𝑈 𝐼] +𝑉𝑎𝑟 [ˆ𝐽𝐼𝑈] +𝑉𝑎𝑟 [ˆ𝐽𝐼 𝐼]
≤

(
| |𝑓𝑈 | |22 | |𝑔𝐼 | |22 + ||𝑔𝑈 | |22 | |𝑓𝐼 | |22 + 2| |𝑓𝐼 | |22 | |𝑔𝐼 | |22

)
/𝑛

=𝐵.

(19)

□

Theorem 4. The bound of JoinSketch is less than the bound of Fast-AGMS, i.e., 𝐵 ≤ 𝐵𝐹𝑎𝑠𝑡 if
𝑛 ≥ 𝑛𝐹𝑎𝑠𝑡

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 81. Publication date: May 2023.

81:14 Feiyu Wang, Qizhi Chen, Yuanpeng Li, Tong Yang, Yaofeng Tu, Lian Yu, and Bin Cui

Proof. Since 𝑓𝑖 ≥ 0 and 𝑔𝑖 ≥ 0, we have

𝐵𝐹𝑎𝑠𝑡 =2| |𝑓 | |22 | |𝑔 | |22/𝑛𝐹𝑎𝑠𝑡 = 2| |𝑓𝑈 + 𝑓𝐼 | |22 | |𝑔𝑈 + 𝑔𝐼 | |22/𝑛𝐹𝑎𝑠𝑡
=2(| |𝑓𝑈 | |22 + ||𝑓𝐼 | |22 + 2𝑓𝑈 ⊙ 𝑓𝐼) (| |𝑔𝑈 | |22 + ||𝑔𝐼 | |22 + 2𝑔𝑈 ⊙ 𝑔𝐼)/𝑛𝐹𝑎𝑠𝑡
=2(| |𝑓𝑈 | |22 | |𝑔𝑈 | |22 + ||𝑓𝑈 | |22 | |𝑔𝐼 | |22 + ||𝑓𝐼 | |22 | |𝑔𝑈 | |22 + ||𝑓𝐼 | |22 | |𝑔𝐼 | |22
+ 4𝑓𝑈 ⊙ 𝑓𝐼 𝑔𝑈 ⊙ 𝑔𝐼 + 2𝑓𝑈 ⊙ 𝑓𝐼 | |𝑔| |22 + 2𝑔𝑈 ⊙ 𝑔𝐼 | |𝑓 | |22)/𝑛𝐹𝑎𝑠𝑡

=
(
| |𝑓𝑈 | |22 | |𝑔𝐼 | |22 + ||𝑔𝑈 | |22 | |𝑓𝐼 | |22 + 2| |𝑓𝐼 | |22 | |𝑔𝐼 | |22

)
/𝑛𝐹𝑎𝑠𝑡

+ Rem/𝑛𝐹𝑎𝑠𝑡

(20)

where Rem stands for the word remain for brevity.

Rem >
(
| |𝑓𝑈 | |22 | |𝑔𝐼 | |22 + ||𝑔𝑈 | |22 | |𝑓𝐼 | |22 + 2| |𝑓𝑈 | |22 | |𝑔𝑈 | |22

)
/𝑛𝐹𝑎𝑠𝑡 (21)

𝐵𝐹𝑎𝑠𝑡

𝐵
=

2| |𝑓 | |2
2
| |𝑔| |2

2
/𝑛𝐹𝑎𝑠𝑡(

| |𝑓𝑈 | |2
2
| |𝑔𝐼 | |2

2
+ ||𝑔𝑈 | |2

2
| |𝑓𝐼 | |2

2
+ 2| |𝑓𝐼 | |2

2
| |𝑔𝐼 | |2

2

)
/𝑛

=
𝑛

𝑛𝐹𝑎𝑠𝑡

(
1 + Rem

| |𝑓𝑈 | |2
1
| |𝑔𝐼 | |2

2
+ ||𝑔𝑈 | |2

1
| |𝑓𝐼 | |2

2
+ 2| |𝑓𝐼 | |2

2
| |𝑔𝐼 | |2

2

)
.

(22)

Assume that 𝑛 ≥ 𝑛𝐹𝑎𝑠𝑡 , i.e., the number of counters in the infrequent part of JoinSketch is equal

or greater than the number of counters in the Fast-AGMS. No matter how much memory the

frequent part and the medium part consume, Rem > 0 holds. Therefore, 𝐵𝐹𝑎𝑠𝑡/𝐵 > 1. The bound

of JoinSketch is less than the bound of Fast-AGMS, i.e., 𝐵 ≤ 𝐵𝐹𝑎𝑠𝑡 . □

As stated above, because the frequency of items stored in the infrequent part is relatively low,

we use small counters in the infrequent part. Under the same memory constraint, the assumption

𝑛 ≥ 𝑛𝐹𝑎𝑠𝑡 usually holds. We show that JoinSketch has a smaller bound of the variance than Fast-

AGMS. Note that 𝐵𝐹𝑎𝑠𝑡/𝐵 may be very big in some cases and it is highly related to how big | |𝑓𝑈 | |22
and | |𝑔𝑈 | |22 are. Intuitively, the more skewed the data is, the bigger the ratio 𝐵𝐹𝑎𝑠𝑡/𝐵 is. It implies

that JoinSketch is supposed to perform much better when the data is high-skewed.

4.3 Effectiveness of Finding Frequent Items
In this section, we provide theoretical analysis on the effectiveness of finding frequent items

for JoinSketch. Every bucket in the medium part is the same as each other, and every bucket is

independent of each other. We only analyze one bucket and the items hashed to it. Assume that the

number of entries in this bucket is𝑀 . Before the formal analysis, we make assumptions about the

data stream to simplify the problem. Since the number of frequent items is rather few compared to

the number of all distinct items, we assume the data stream hashed to the bucket contains only one

frequent item 𝑥 with frequency 𝑡 and all of the other items in this data stream appear for one time.

The data stream contains 𝑁 items in total. We use 𝑥𝑖 to represent item 𝑥 that appears for the 𝑖-th

time. We use 𝑘𝑖 to represent the number of other items between 2 consecutive items 𝑥𝑖 and 𝑥𝑖+1.
W.L.O.G., we assume 𝑥0 is the first item, and 𝑥𝑡 is the last item in this data sequence. Obviously, we

have 𝑘𝑖 ≥ 0 and

∑𝑡−1
𝑖=1 𝑘𝑖 + 𝑡 = 𝑁 .

Theorem 5. The probability of finding 𝑥 a frequent item is

P(𝑓 𝑜𝑢𝑛𝑑) = 1 −
𝑡−1∏
𝑖=1

(
1 −

(
1 − 1

𝑀

)𝑘𝑖)
. (23)

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 81. Publication date: May 2023.

JoinSketch: A Sketch Algorithm for Accurate and Unbiased Inner-Product Estimation 81:15

Proof. Since frequencies of items other than 𝑥 is 1, once the frequency of 𝑥 in the medium part

is equal or greater than 2, 𝑥 will not be replaced anymore. It will grow bigger and bigger and the

medium part will find out it is a frequent item. When 𝑥1 comes, it will be inserted into a random

entry. Afterward, every item (𝑘1 items in total) before 𝑥2 will bring out a replacement of a random

entry. The probability of replacing 𝑥 is
1

𝑀
for every replacement. So the probability of that 𝑥 is not

replaced by other items until 𝑥2 is (1 − 1

𝑀
)𝑘1 . The probability of replacing 𝑥1 is 1 − (1 − 1

𝑀
)𝑘1 .

If 𝑥1 is replaced by other item before 𝑥2 comes, the medium part can not distinguish item

𝑥 as a frequent item when 𝑥2 comes. Instead, 𝑥2 will bring out a replacement and insert item

𝑥 with frequency 1 into a random entry. The situation between 𝑥2 and 𝑥3 is the same as the

situation between 𝑥1 and 𝑥2. The probability of that 𝑥 is replaced by other items before 𝑥3 is

1 − (1 − 1

𝑀
)𝑘2 . When 𝑥3 comes, the probability for the medium part not to find out 𝑥 a frequent

item is (1 − (1 − 1

𝑀
)𝑘1) × (1 − (1 − 1

𝑀
)𝑘2). Similarly, the probability for the medium part not to find

out 𝑥 a frequent item after the last item 𝑥𝑡 comes is

P(𝑟𝑒𝑝𝑙𝑎𝑐𝑒 𝑎𝑙𝑙) =
𝑡−1∏
𝑖=1

(
1 −

(
1 − 1

𝑀

)𝑘𝑖)
. (24)

Therefore, the probability of finding 𝑥 as a frequent item is

P(𝑓 𝑜𝑢𝑛𝑑) = 1 − P(𝑟𝑒𝑝𝑙𝑎𝑐𝑒 𝑎𝑙𝑙) = 1 −
𝑡−1∏
𝑖=1

(
1 −

(
1 − 1

𝑀

)𝑘𝑖)
. (25)

□

Now we consider the error of the frequent part produced by the medium part. Define 𝑡 is the

frequency of 𝑥 recorded in the medium part or the frequent part. The error 𝑒𝑟 = 𝑡 − 𝑡 . Note that the
frequent part and the medium part never provide over estimation so that 𝑒𝑟 ≥ 0.

Theorem 6. E(𝑒𝑟) = ∑𝑡
𝑗=1 𝑗 ×

∏𝑗+1
𝑖=1

(
1 − (1 − 1

𝑀
)𝑘𝑖

)
.

Proof. After the frequency of 𝑥 grows to 2, the following item 𝑥 will not produce any error. If

𝑥𝑖 makes the frequency grow to 2, the error 𝑒𝑟 = 𝑖 − 2. Therefore, we have P(𝑒𝑟 = 𝑗), 𝑗 = 0, ..., 𝑡 − 2

P(𝑒𝑟 = 𝑗) =
𝑗+1∏
𝑖=1

(
1 −

(
1 − 1

𝑀

)𝑘𝑖)
. (26)

Hence, the expectation of 𝑒𝑟

E(𝑒𝑟) =
𝑡∑︁
𝑗=1

𝑗 × P (𝑒𝑟 = 𝑗) =
𝑡∑︁
𝑗=1

𝑗 ×
𝑗+1∏
𝑖=1

(
1 −

(
1 − 1

𝑀

)𝑘𝑖)
. (27)

□

Theorem 7. If the frequency of item 𝑥 follows Poisson distribution P(𝑡
𝑁
), E(𝑒𝑟) =

(
ln 𝑀

𝑀−1 ·
𝑁
𝑡

)
2.

Proof. If the frequency of item 𝑥 follows Poisson distribution P(𝑡
𝑁
), the interval 𝑘𝑖 between 𝑥𝑖

and 𝑥𝑖+1 follows exponential distribution 𝐸 (𝑡
𝑁
). Therefore, we have 𝑘𝑖 ∼ 𝐸 (𝜆) = 𝐸 (𝑡

𝑁
) and 𝑘𝑖 is

independent from 𝑘 𝑗 for ∀𝑖 ≠ 𝑗 .

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 81. Publication date: May 2023.

81:16 Feiyu Wang, Qizhi Chen, Yuanpeng Li, Tong Yang, Yaofeng Tu, Lian Yu, and Bin Cui

Hence, we have

𝜁 =E

(
1 −

(
1 − 1

𝑀

)𝑘𝑖)
= 1 − E

(
1 − 1

𝑀

)𝑘𝑖
=1 −

∫ ∞

0

(
1 − 1

𝑀

)𝑘𝑖
𝜆𝑒−𝜆𝑘𝑖d𝑘𝑖 =

ln𝑀 − ln(𝑀 − 1)
ln𝑀 − ln(𝑀 − 1) + 𝑡

𝑁

.

(28)

Since 𝜁 < 1, we have

E(𝑒𝑟) =
𝑡∑︁
𝑗=1

𝑗 × P(𝑒𝑟 = 𝑗) =
𝑡∑︁
𝑗=1

𝑗 × 𝜁 𝑗+1

≈ 𝜁 2

(1 − 𝜁)2 =

(
ln

𝑀

𝑀 − 1 ·
𝑁

𝑡

)
2

.

(29)

□

According to Equation 29, if the number of entries in a bucket (𝑀) is bigger or the proportion of

frequent items to all items is bigger (𝑡/𝑁), E(𝑒𝑟) will be smaller.

4.4 Analysis on Fingerprint
The fingerprints in the medium part and the frequent part are used to identify different items

and reduce memory costs. However, fingerprints bring about the problem of fingerprint collisions.

If two or more items, especially frequent items, have the same fingerprint, the accuracy of the

estimation will be degraded a lot. In this section, we analyze how fingerprints affect the accuracy

of the inner-product estimation. Consider a set of 𝑁 items. 𝐴𝑖 denotes the random event that there

is no fingerprint collision among 𝑖 distinct independent items.

Lemma 8. If the length of the fingerprint is 𝑙 , the probability of fingerprint collision between two
items is P(𝐴2) = 1 − 2

𝑙

(2𝑙)2 .

Theorem 9. The probability of no fingerprint collision between 𝑁 items is P(𝐴𝑁) =
∏𝑁

𝑖=1 (2𝑙−𝑖)
2
𝑙𝑁 .

Proof. We derive P(𝐴𝑁) from the formula of conditional probability. We have

P(𝐴𝑁) = P(𝐴𝑁−1) × P (𝐴𝑁 |𝐴𝑁−1) = P(𝐴𝑁−1) ×
2
𝑙 − 𝑁
2
𝑙

=

∏𝑁
𝑖=1

(
2
𝑙 − 𝑖

)
2
𝑙𝑁

.

(30)

□

Table 2. The probability of no hash collision.

Probability 𝑁 = 4 𝑁 = 16 𝑁 = 64 𝑁 = 128

𝑙 = 16 1.5𝐸 − 04 2.0𝐸 − 03 3.1𝐸 − 02 1.2𝐸 − 01
𝑙 = 32 2.3𝐸 − 09 3.2𝐸 − 08 4.8𝐸 − 07 1.9𝐸 − 06

As shown in Table 2, the probability of fingerprint collisions is rather small when the length

of fingerprint 𝑙 = 32. If fingerprint collisions occur, JoinSketch will regard two or more items as

the same item. In this case, the reported inner-product estimation is expected to be slightly larger.

Such an error is small and can be much smaller when using more bits for the fingerprints.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 81. Publication date: May 2023.

JoinSketch: A Sketch Algorithm for Accurate and Unbiased Inner-Product Estimation 81:17

5 APPLICATIONS
JoinSketch is proposed for accurate and fast inner-product estimation in data stream scenarios. In

Section 5.1, we describe the applications of JoinSketch in data stream scenarios. JoinSketch can

be applied in more one-pass scenarios. In Section 5.2 and Section 5.3, we discuss how to apply

JoinSketch in one-pass scenarios of database and cosine similarity.

5.1 Applications in Data Stream Processing
The inner-product of data streams is an important statistic for data stream processing. For exam-

ple, we need to analyze the correlation between two data streams in many large-scale network

measurement systems. To be specific, tracking the inner-product of abnormal traffic on several

routers can help network administrators analyze the current running status of the network system.

If a link failure happens, a practical network measurement system should be able to allow us to

locate the link failure as soon as possible. In this scenario, the data stream processing is proposed

to be real-time and fast enough. JoinSketch is suitable for data streams’ inner-product estimation.

We can deploy JoinSketch in measurement nodes (e.g., IP routers). The function of JoinSketch is

to provide key statistics of data flows through the router and send the measurement result to the

controller node. The estimation of the inner-product will then be used to analyze the real-time

running status of the network.

5.2 Applications in Database
Inner-product estimation is an essential step in multi-way join. Most systems perform multi-way

join by binary join algorithms, i.e., they iteratively select two tables and join them into intermediate

relations. However, a poor join plan may lead to a large volume of intermediate relations and

result in high computation overhead. Therefore, many existing solutions [9, 23, 31, 50] present to

use sketches to estimate join size in advance and avoid poor plans. JoinSketch supports join size

estimation. Given two tables and join predicates, we build a JoinSketch for each table. Then, we

estimate the inner-product of the two tables as the join size.

5.3 Applications in Cosine Similarity
Cosine similarity is a key metric in many fields of data science, including data mining, natural

language processing, recommendation systems and so on. Cosine similarity computation, however,

is often the bottleneck in some applications with massive volumes of data. Fortunately, it is

acceptable to use the estimated cosine similarity instead of the true value in some cases. For

example, researchers propose to estimate cosine similarity of data streams using the AGMS sketch

in [32].

JoinSketch can be also applied to estimate the cosine similarity in data stream scenarios. To be

specific, cosine similarity can be derived from inner-product as shown below:

𝑐𝑜𝑠 (𝐹,𝐺) = 𝑓 ⊙ 𝑔√︁
(𝑓 ⊙ 𝑓) (𝑔 ⊙ 𝑔)

. (31)

After constructing JoinSketch for 𝐹 and𝐺 , we can derive cosine similarity using three inner-product

estimations.

6 EXPERIMENTAL RESULTS
In this section, we provide experimental results of JoinSketch. We present the experimental setup in

Section 6.1. First, data stream scenarios are the main and the most critical scenarios of JoinSketch.

We show the performance of JoinSketch in data stream scenarios compared with prior arts. Second,

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 81. Publication date: May 2023.

81:18 Feiyu Wang, Qizhi Chen, Yuanpeng Li, Tong Yang, Yaofeng Tu, Lian Yu, and Bin Cui

we demonstrate a few properties of JoinSketch itself through experiments, including stability and

throughput. Third, we show the performance of JoinSketch in finding frequent items and frequency

estimation. Finally, we analyze the influence of parameters and give recommended settings. We

show that JoinSketch has an advantage over existing algorithms when the data is skewed and the

memory is limited.

6.1 Experimental Setup
6.1.1 Datasets.
1) CAIDA dataset: CAIDA Anonymized Internet Trace [10] is a data stream of anonymized IP

trace collected in 2018. Each item is identified by its source IP (4 bytes) and destination IP (4 bytes).

2) TPC-DS dataset: The TPC Benchmark™ DS (TPC-DS) [41] is a decision support benchmark

that models several generally applicable aspects of a decision support system, including queries

and data maintenance. The benchmark provides a representative evaluation of the System Under

Test’s (SUT) performance as a general-purpose decision support system.

3) MovieLens dataset: The MovieLens datasets [27] are widely used in education, research, and

industry. These datasets are a product of member activity in the MovieLens movie recommendation

system, an active research platform that has hosted many experiments since its launch in 1997.

4) Zipf datasets:We generate synthetic datasets of Zipf distribution with different parameters and

every dataset contains 32,000,000 items in completely random order.

5) Zipf with shifting: Two Zipf datasets with the same distribution will have frequent items with

the same id. A shifting of 𝑘 means that the 𝑖𝑡ℎ most frequent item in the original dataset is the

(𝑖 + 𝑘)%𝑁 𝑡ℎ
most frequent item in the shifted dataset, where 𝑁 is the number of distinct items. We

use a pair of Zipf dataset and shifted Zipf dataset to evaluate the impact of different correlations.

The larger the shifting is, the less correlated the datasets are.

6) Zipf with different data arrival orders: In the scenarios of traditional database systems, the

physical layout of data is often ordered, semi-ordered, or clustered, which leads to different data

arrival orders. We reshuffle the Zipf datasets to generate datasets of different data arrival orders.

We sort the items by their ID to generate ordered datasets. We swap every item with one of the 100

items closest to it based on the ordered datasets to generate clustered datasets. We swap every item

with one of the 1000 items closest to it based on the ordered datasets to generate semi-ordered

datasets.

6.1.2 Platform and implementation. We evaluate all algorithms on a server with 18-core CPUs (36

threads, Intel CPU i9-10980XE @3.00 GHz) with 128GB 3200MHz DDR4 memory and 24.75MB L3

cache.We implement all algorithmswith C++ and build themwith g++ 7.5.0 (Ubuntu 7.5.0-6ubuntu2)

and the -O3 option. The hash functions we use are 32-bit Murmur Hash [1].

6.1.3 Metrics.
1) Absolute Error (AE): 1

Ψ

∑ ��𝐽 − 𝐽
��
, where 𝐽 is the true value of inner-product, 𝐽 is the estimated

value, and Ψ is the number of testing rounds.

2) Relative Error (RE): 1

Ψ

∑ ��𝐽 − 𝐽
�� /𝐽 .

3) Variance (Var): 1

Ψ

∑ (
𝐽 − 𝐽

)
2

. We use variance to measure the stability of the algorithm.

4) Throughput (Mops): Million operations per second.

5) Maximum Absolute Error and Minimum Absolute Error: We use them to measure the

algorithm’s best- and worst-case errors.

6) Precision Rate (PR): Reported top-𝑘

Reported items
. We use the precision rate to evaluate the ability to find

frequent items.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 81. Publication date: May 2023.

JoinSketch: A Sketch Algorithm for Accurate and Unbiased Inner-Product Estimation 81:19

7) Average Relative Error (ARE): 1

|K |
∑

𝑒𝛽𝑖 ∈K |𝑓𝑒𝛽𝑖 −
ˆ𝑓𝑒𝛽𝑖 |/𝑓𝑒𝛽𝑖 , where 𝑓𝑒𝛽𝑖 is the real frequency of

item 𝑒𝛽𝑖 ,
ˆ𝑓𝑒𝛽𝑖 is the estimated frequency of 𝑒𝛽𝑖 , and K is the query set.

8) Average Absolute Error (AAE): 1

|K |
∑

𝑒𝛽𝑖 ∈K |𝑓𝑒𝛽𝑖 −
ˆ𝑓𝑒𝛽𝑖 |, where K, 𝑓𝑒𝛽𝑖 and ˆ𝑓𝑒𝛽𝑖 are the same as

those defined in ARE.

25 50 75 100 125
Memory Usage (KB)

10
6

10
7

10
8

10
9

A
E

Ours
F-AGMS

Count-Min
Skimmed

(a) AE on CAIDA.

25 50 75 100 125
Memory Usage (KB)

10
7

10
8

10
9

10
10

10
11

A
E

Ours
F-AGMS

Count-Min
Skimmed

(b) AE on Zipf (𝛼 = 0.8).

25 50 75 100 125
Memory Usage (KB)

10
6

10
7

10
8

10
9

A
E

Ours
F-AGMS

Count-Min
Skimmed

(c) AE on TPC-DS.

25 50 75 100 125
Memory Usage (KB)

10
4

10
5

10
6

10
7

A
E

Ours
F-AGMS

Count-Min
Skimmed

(d) AE on MovieLens.

Fig. 3. AE on various datasets.

0.00 0.25 0.50 0.75 1.00
Alpha

10
−7

10
−5

10
−3

10
−1

10
1

R
E

Ours
F-AGMS

Count-Min
Skimmed

Fig. 4. Impact of dataset
skewness.

100 200 300
Shifting

10
−2

10
−1

10
0

R
E Ours

F-AGMS
Count-Min
Skimmed

Fig. 5. Impact of dataset
correlation.

100 200 300
Shifting

10
−2

R
E

Ours-80KB
Ours-40KB

Ours-120KB

Fig. 6. Dataset correla-
tion v.s. memory usage.

CAIDA TPC-DS Zipf(0.8)
Datasets

0

5

10

15

20

25

M
op
s

Ours
F-AGMS

Count-Min

Fig. 7. Throughput.

6.1.4 Parameter setting.
We compare JoinSketch with the Fast-AGMS sketch [15] (F-AGMS for short), the Count-Min sketch

[16, 46], and the Skimmed sketch [23]. We set the number of hashes 𝑑 = 3 by default, and all results

are averaged over 50 runs with different hash seeds. For the CAIDA dataset, we set the threshold 𝑇

to 400 for both JoinSketch and the Skimmed sketch. For the Zipf datasets, the threshold we set is

adjusted according to the distribution’s parameter 𝛼 .

6.2 Experiments on Accuracy
Impact of memory size (Figure 3): We evaluate the accuracy of JoinSketch and its competitors.

The memory allocated to these algorithms ranges from 8KB to 128KB on each dataset. We find

that JoinSketch always achieves the best accuracy. The Count-Min sketch needs more memory

to work well, while in practice, we don’t always have that much memory. The accuracy of the

Fast-AGMS sketch and the Skimmed sketch is comparable. Because the separated frequent items

are not accurate, the performance of the Skimmed sketch is always inferior to JoinSketch, and

even sometimes inferior to the Fast-AGMS sketch. Compared to the Skimmed sketch, the error of

the frequent items found by JoinSketch is so small that JoinSketch achieves the best performance.

When the memory is large enough, the average absolute error of JoinSketch is up to 15× smaller

than that of the Fast-AGMS sketch. On average, JoinSketch is 10 times better than the Fast-AGMS

sketch.

In addition to the CAIDA and the generated Zipf datasets, we also conduct experiments on the

TPC-DS dataset and MovieLens dataset, which corresponds to the applications in database systems

and cosine similarity mentioned in Section 5.2 and Section 5.3. These two datasets are in the form

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 81. Publication date: May 2023.

81:20 Feiyu Wang, Qizhi Chen, Yuanpeng Li, Tong Yang, Yaofeng Tu, Lian Yu, and Bin Cui

25 50 75 100 125
Memory Usage (KB)

10
7

10
8

10
9

A
E

random
semiordered

ordered
clustered

(a) AE.

25 50 75 100 125
Memory Usage (KB)

10
14

10
15

10
16

10
17

10
18

VA
R

random
semiordered

ordered
clustered

(b) Variance.

Fig. 8. Impact of data arrival orders.

of key-value pairs, where key is the data item and the value is the frequency of the item. The

experimental results show that JoinSketch can still achieve good performance. The TPC-DS dataset

is a benchmark for database systems that has a bit of skewness. Therefore, JoinSketch still performs

well since the frequent items are separated from the infrequent items. We use the Movielens dataset

to evaluate the performance of JoinSketch on cosine similarity estimation as in [32]. The dataset

consists of movie ratings on a 5-star scale, with half-star increments. As shown in Figure 3(d), the

absolute error of JoinSketch is small. This dataset only has ratings from 0 to 5 in the vector, but

even for such a dataset with little skewness, JoinSketch still outperforms the Fast-AGMS sketch and

the Count-Min sketch. On these datasets, the Skimmed sketch has almost no optimization effect.

Impact of dataset skewness (Figure 4): To simulate data with different skewness, we conduct

experiments on the datasets of Zipf distribution with alpha ranging from 0.0 to 0.9. We fixed the

memory size of all algorithms to 80KB. We use RE instead of AE because the true value of the

inner-product changes as the alpha changes. We find that as the skewness of the dataset increases,

the RE of each algorithm decreases. This is because of the nature of the Zipf distribution. As alpha

increases, the number of distinct items in the data stream decreases, and the true value of the

inner-product increases considerably. Both of the above factors will lead to smaller RE. From Figure

4, we can clearly see that JoinSketch achieves the best accuracy. The higher the skewness of the

dataset is, the greater the advantage of JoinSketch is.

Impact of dataset correlations (Figure 5 and Figure 6):We generate two Zipf datasets with

𝛼 = 0.8 and shift one of them by different parameters between 0 and 300. The memory used by the

algorithms is fixed to 80KB and the accuracy is measured with RE. The experimental results show

that when the datasets are less correlated, the accuracy of all algorithms becomes lower, which

indicates that the inner-product estimation becomes more difficult. More shifting degrades the

accuracy of JoinSketch because when the intersection between the frequent items of two datasets

is small, the benefit of separating frequent items and infrequent items is small. JoinSketch, however,

always achieves the best accuracy among competitors. We also study the impact of memory usage

and data correlations together. Figure 6 shows that more memory usage improves the accuracy of

JoinSketch while the impact of dataset correlations remains the same.

Impact of data arrival orders: We study the impact of data arrival orders on JoinSketch because

the data arrival skew will affect the effectiveness of separating the frequent items for JoinSketch.

As shown in Figure 8, data arrival orders affect the performance of JoinSketch. The random dataset

is the worst case because many instances of frequent items may be evicted to the infrequent

part before they grow frequent. JoinSketch achieves the best accuracy on the ordered dataset

because when the dataset is ordered, JoinSketch can find frequent items efficiently. The accuracy

of JoinSketch on clustered and semi-ordered datasets is between the ordered and random ones,

which is consistent with how much ordered these datasets are. More ordered datasets lead to better

performance of JoinSketch.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 81. Publication date: May 2023.

JoinSketch: A Sketch Algorithm for Accurate and Unbiased Inner-Product Estimation 81:21

50 100
Memory Usage (KB)

10
12

10
14

10
16

10
18

VA
R

Ours
F-AGMS

Count-Min
Skimmed

(a) Variance on CAIDA.

Ours F-AGMS Skimmed
Algorithms

105

106

107

RE

(b) Stability on CAIDA.

25 50 75 100 125
Memory Usage (KB)

10
15

10
17

10
19

10
21

10
23

VA
R

Ours
F-AGMS

Count-Min
Skimmed

(c) Variance on Zipf (𝛼 = 0.8)

Ours F-AGMS Skimmed
Algorithms

105

106

107

108

109

RE

(d) Stability on Zipf (𝛼 = 0.8)

Fig. 9. Experiments on stability.

25 50 75 100 125
Memory Usage (KB)

10
−2

10
−1

10
0

A
R

E

Ours
F-AGMS

Count-Min

(a) ARE on CAIDA.

25 50 75 100 125
Memory Usage (KB)

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

is
io

n

Ours

(b) Precision on CAIDA.

25 50 75 100 125
Memory Usage (KB)

10
−2

10
−1

10
0

10
1

A
R

E

Ours
F-AGMS

Count-Min

(c) ARE on Zipf (𝛼=0.8).

25 50 75 100 125
Memory Usage (KB)

0.6

0.7

0.8

0.9

1.0

Pr
ec

is
io

n

Ours

(d) Precision on Zipf (𝛼 =

0.8).

Fig. 10. Accuracy of finding frequent items.

6.3 Experiments on Stability
An important indicator to measure the quality of an algorithm is the variance because the algorithm

with less variance leads to more stability. We evaluate the variance of JoinSketch and its competitors

for 100 rounds on the CAIDA and Zipf datasets with fixed memory of 80KB. The results are shown

in Figure 9. From Figure 9(a) and Figure 9(c), we can see that JoinSketch has a clear advantage on

the variance. Besides the variance, Figure 9(b) and Figure 9(d) show that JoinSketch also performs

better than other algorithms in terms of max, min, and median. Benefiting from separating the

frequent items, the stability of JoinSketch for inner-product estimation are significantly better than

other algorithms.

6.4 Experiments on Throughput
We evaluate the throughput of each algorithm on different datasets. The operation of JoinSketch is

more complex, so it generally takes more time to insert an item than other algorithms. But with

SIMD optimization, JoinSketch can sometimes achieve better throughput. As shown in Figure 7,

we can see that JoinSketch, the Fast-AGMS sketch, and the Count-Min sketch have comparable

throughput. The Skimmed sketch is not a one-pass algorithm, so we don’t compare its throughput

with other algorithms.

6.5 Experiments on Finding Frequent Items
Finding frequent items is a fundamental problem in data stream processing. JoinSketch is not

specific to this problem, but can report frequent items approximately using the frequent part. We

conducted two experiments related to finding frequent items, and the two experiments can also

reflect the efficiency of our algorithm on separating the frequent items and the infrequent items.

First, we query the frequency of the 500 most frequent items in the CAIDA and Zipf (𝛼 = 0.8)

datasets. As shown in Figure 10(a) and Figure 10(c), the ARE of JoinSketch is the smallest, which

means that JoinSketch performs very well in the frequency estimation of the 500 most frequent

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 81. Publication date: May 2023.

81:22 Feiyu Wang, Qizhi Chen, Yuanpeng Li, Tong Yang, Yaofeng Tu, Lian Yu, and Bin Cui

items. We then evaluate how many items of the top 500 frequent items appear in the frequent part,

and Figure 10(b) and Figure 10(d) show that JoinSketch is very accurate in finding the frequent

items. In fact, when the memory is more than 30KB, the precision can reach more than 90%, which

means that most of the frequent items are successfully classified into the frequent part.

200 400 600 800 1000
Memory Usage (KB)

10
−1

10
0

10
1

A
A

E
Ours
F-AGMS

Count-Min
Ours-biased

(a) AAE on CAIDA.

200 400 600 800 1000
Memory Usage (KB)

10
0

10
1

A
A

E

Ours
F-AGMS

Count-Min
Ours-biased

(b) AAE on Zipf (𝛼 = 0.8).

Fig. 11. Frequency estimation.

6.6 Experiments on Frequency Estimation
Figure 11 shows the experimental results of frequency estimation on CAIDA and Zipf (𝛼 = 0.8). The

line of Ours-biased represents the lookup operation which does not query an item in the infrequent

part if it exists in the frequent part or the medium part. JoinSketch outperforms the Count-Min

sketch and the Fast-AGMS sketch in terms of frequency estimation. The performance of JoinSketch

is nearly the same as JoinSketch-biased, which means that few instances of frequent items are

evicted to the infrequent part compared with the instances recorded in the frequent part and the

medium part.

6.7 Experiments on Parameters
Impact of Threshold T (Figure 12(a)): JoinSketch needs to set a threshold 𝑇 . It affects which

items go into the frequent part. In fact, threshold𝑇 is strongly related to the skewness of the dataset.

Our goal is to filter out the frequent items in the dataset. On the one hand, if the threshold𝑇 is small,

some infrequent items will be considered as frequent items, which will downgrade the accuracy of

JoinSketch. On the other hand, if the threshold 𝑇 is set too large, frequent items will be considered

infrequent and the counters in the medium part may overflow, which will also downgrade the

accuracy of JoinSketch. Figure 12(a) shows the results of JoinSketch on the CAIDA dataset with

threshold 𝑇 ranging from 100 to 1000. The results are in line with the above discussion. When the

threshold is greater than 300, the difference is not big. This is because the error of items with a

frequency greater than 300 in the CAIDA dataset entering the frequent part is relatively small. The

reason that there is no overflow caused by a large threshold is that the size of the counter in the

medium part is set to 10 bits in our algorithm optimization. The threshold is less than 1024, and

there will be no overflow on the CAIDA dataset.

Impact of memory allocation (Figure 12(b)): The memory used by JoinSketch is divided into

three parts. The memory of the frequent part should be positively related to the number of frequent

items, so it actually depends on the threshold 𝑇 . Assuming the memory of frequent part is set

according to the threshold𝑇 , we consider only the size ratio of the medium part and the infrequent

part. We evaluate the performance of JoinSketch with
Medium Part size

Total size
ranging from

1

8
to

7

8
on the

CAIDA dataset. As shown in Figure 12(b), we can find that when the memory of the medium part

is small, the error is large because the size of the medium part affects the effectiveness of finding

the frequent items. When the infrequent part is too small, the error of the infrequent items due to

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 81. Publication date: May 2023.

JoinSketch: A Sketch Algorithm for Accurate and Unbiased Inner-Product Estimation 81:23

200 400 600 800 1000
Threshold

1M

2M

3M

A
E

(a) Effect of Threshold T.

0.2 0.4 0.6 0.8
Ratio

300k

325k

350k

375k

400k

425k

A
E

(b) Effect of memory alloca-

tion.

Fig. 12. Impact of different parameters of JoinSketch.

hash collisions can also lead to inaccurate estimation. Therefore, we should set a moderate memory

ratio of the medium part to the infrequent part.

7 RELATEDWORK
This section first discusses related work for the inner-product estimation and the join size estimation

and then presents algorithms for finding frequent items and sketch algorithms designed for skewed

data streams.

7.1 Inner-product Estimation
There are three mainstream inner-product size estimation techniques in the literature: histograms,

sampling techniques, and sketches.

7.1.1 Histograms. Histograms[28–30, 42] are common column statistics that provide information

about the data distribution of column data in a database. It divides the domain of an attribute into

several buckets and assumes a uniform distribution within each bucket.

7.1.2 Sampling Techniques. Sampling techniques[26] are widely used in inner-product/join size

estimation. The cross-product sampling scheme[26] is believed to give the best estimation out of the

simple sampling schemes. However, sampling techniques are sensitive to skewed and sparse data,

while skewed data are common in real scenarios. To address this drawback, researchers propose

Bifocal[24] sampling algorithm and End-biased[21] sampling algorithm. Correlated sampling is

proposed in [55], which is a part of CS2 algorithm, and [52] improved correlated sampling.

7.1.3 Sketches. Sketches [12, 13, 16, 46] are especially appropriate for the scenarios of data streams.

There are several pieces of research focusing on inner-product estimation using sketches. The

basic AGMS sketch is first presented in [4, 5]. Dobra et al. [19, 20] extends AGMS to multi-way

join size estimation. The Fast-AGMS sketch [15] preserves a matrix of basic AGMS counters to

improve accuracy and efficiency simultaneously and achieves the best performance according to

[45, 46]. The Skimmed sketch[23] and the Red sketch [25] propose to estimate the inner-product

by estimating the inner-product of frequent items and infrequent items separately. The Skimmed

sketch first builds a Fast-AGMS sketch for a data stream. Then it goes through the domain of the

data stream to find frequent items. The Skimmed sketch and the Red sketch need to go through

the domain of the data stream before estimating the inner-product, which means these multi-pass

techniques are not practical. [50] extends the sketch-based method to join sketch estimation subject

to filters. [31] proposes an online query optimizer exclusively based on sketches in a real database

system and proposes to reorganize arrays of counters into a matrix to support multi-way join

using the Fast-AGMS sketch. [9] introduces bound sketches that provide theoretical upper bounds

for cardinality estimation.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 81. Publication date: May 2023.

81:24 Feiyu Wang, Qizhi Chen, Yuanpeng Li, Tong Yang, Yaofeng Tu, Lian Yu, and Bin Cui

7.2 Finding Frequent Items
There are many solutions in finding frequent items, including Misra-Gries algorithm [40], Lossy

counting [38], SpaceSaving [39], Unbiased SpaceSaving [49], e.t.c. [8]. They report high accuracy for
the frequent items but report 0 for the infrequent items and are thus not suitable for inner-product

estimation.

7.3 Separating Frequent and Infrequent Items
Real data often obeys unbalanced data distribution such as Zipf [3, 43]. There are a number of sketch

algorithms that record frequent and infrequent items separately in the literature, such as ASketch

[44], ColdFilter [60], ElasticSketch [54], and so on [7, 35–37, 53, 58, 59]. After adjustment to the

scenarios of inner-product, they can be applied to estimate inner-product of data streams. However,

the adjustment may require a lot of hard work because these algorithms are not particularly

designed for inner-product estimation. Most of them cannot provide an unbiased estimation.

8 CONCLUSION
This paper proposes an algorithm called JoinSketch for inner-product estimation. It can provide

accurate, fast, and unbiased inner-product estimation for data streams. By separating frequent

and infrequent items, JoinSketch improves the accuracy of inner-product estimation, especially

when the data is highly-skewed. We prove mathematically the unbiasedness of inner-product

estimation given by JoinSketch and that it has lower variance than the prior art, Fast-AGMS sketch.

We conduct extensive experiments on various real-world and synthetic datasets. Our experimental

results show that JoinSketch maintains unbiasedness, and the error is 10 times on average smaller

than the state-of-the-art on high-skewed datasets. JoinSketch outperforms the state-of-the-art with

respect to both accuracy and stability.

ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for their valuable suggestions. This work is sup-

ported by Key-Area Research and Development Program of Guangdong Province 2020B0101390001,

ZTE Industry-University-Institute Cooperation Funds under Grant No. HC-CN-20220705007, and

National Natural Science Foundation of China (NSFC) (No. U20A20179 and No. 61872011).

REFERENCES
[1] 2016. Murmur Hashing source codes. https://github.com/aappleby/smhasher/blob/master/src/MurmurHash3.cpp.

[2] 2023. Related Source code. https://github.com/JoinSketch/JoinSketch.

[3] Lada A Adamic and Bernardo A Huberman. 2000. Power-law distribution of the world wide web. science 287, 5461
(2000), 2115–2115.

[4] Noga Alon, Phillip B Gibbons, Yossi Matias, and Mario Szegedy. 2002. Tracking join and self-join sizes in limited

storage. J. Comput. System Sci. 64, 3 (2002), 719–747.
[5] Noga Alon, Yossi Matias, and Mario Szegedy. 1999. The space complexity of approximating the frequency moments.

Journal of Computer and system sciences 58, 1 (1999), 137–147.
[6] K. Balachander, S. Subhabrata, Z. Yin, and C. Yan. 2003. Sketch-based change detection: methods, evaluation, and

applications. In Proceedings of the 3rd ACM SIGCOMM conference on Internet measurement. ACM, 234–247.

[7] Ran Ben Basat, Gil Einziger, Michael Mitzenmacher, and Shay Vargaftik. 2021. SALSA: self-adjusting lean streaming

analytics. In 2021 IEEE 37th International Conference on Data Engineering (ICDE). IEEE, 864–875.
[8] Ran Ben-Basat, Gil Einziger, Roy Friedman, and Yaron Kassner. 2016. Heavy hitters in streams and sliding windows. In

IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications. IEEE, 1–9.
[9] Walter Cai, Magdalena Balazinska, and Dan Suciu. 2019. Pessimistic cardinality estimation: Tighter upper bounds for

intermediate join cardinalities. In Proceedings of the 2019 International Conference on Management of Data. 18–35.
[10] CAIDA. 2018. The CAIDA UCSD Anonymized Internet Traces 2018. https://www.caida.org/catalog/datasets/passive_

dataset/.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 81. Publication date: May 2023.

https://github.com/aappleby/smhasher/blob/master/src/MurmurHash3.cpp
https://github.com/JoinSketch/JoinSketch
https://www.caida.org/catalog/datasets/passive_dataset/
https://www.caida.org/catalog/datasets/passive_dataset/

JoinSketch: A Sketch Algorithm for Accurate and Unbiased Inner-Product Estimation 81:25

[11] Moses Charikar, Kevin Chen, and Martin Farach-Colton. 2002. Finding frequent items in data streams. In Automata,
Languages and Programming. Springer.

[12] Peiqing Chen, Dong Chen, Lingxiao Zheng, Jizhou Li, and Tong Yang. 2021. Out of many we are one: Measuring item

batch with clock-sketch. In Proceedings of the 2021 International Conference on Management of Data. 261–273.
[13] Peiqing Chen, Yuhan Wu, Tong Yang, Junchen Jiang, and Zaoxing Liu. 2021. Precise error estimation for sketch-based

flow measurement. In Proceedings of the 21st ACM Internet Measurement Conference. 113–121.
[14] Shumo Chu, Magdalena Balazinska, and Dan Suciu. 2015. From theory to practice: Efficient join query evaluation in a

parallel database system. In Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data.
63–78.

[15] Graham Cormode and Minos Garofalakis. 2005. Sketching streams through the net: Distributed approximate query

tracking. In Proceedings of the 31st international conference on Very large data bases. 13–24.
[16] Graham Cormode, Minos Garofalakis, Peter J Haas, Chris Jermaine, et al. 2011. Synopses for massive data: Samples,

histograms, wavelets, sketches. Foundations and Trends® in Databases 4, 1–3 (2011), 1–294.
[17] Graham Cormode and S Muthukrishnan. 2005. An improved data stream summary: the count-min sketch and its

applications. Journal of Algorithms 55, 1 (2005), 58–75.
[18] Kyle Deeds, Dan Suciu, Magda Balazinska, and Walter Cai. 2022. Degree sequence bound for join cardinality estimation.

arXiv preprint arXiv:2201.04166 (2022).
[19] Alin Dobra, Minos Garofalakis, Johannes Gehrke, and Rajeev Rastogi. 2002. Processing complex aggregate queries

over data streams. In Proceedings of the 2002 ACM SIGMOD international conference on Management of data. 61–72.
[20] Alin Dobra, Minos Garofalakis, Johannes Gehrke, and Rajeev Rastogi. 2004. Sketch-based multi-query processing over

data streams. In International Conference on Extending Database Technology. Springer, 551–568.
[21] Cristian Estan and Jeffrey F Naughton. 2006. End-biased samples for join cardinality estimation. In 22nd International

Conference on Data Engineering (ICDE’06). IEEE, 20–20.
[22] Philippe Flajolet, Éric Fusy, Olivier Gandouet, and Frédéric Meunier. 2007. Hyperloglog: the analysis of a near-optimal

cardinality estimation algorithm. In Discrete Mathematics and Theoretical Computer Science. Discrete Mathematics and

Theoretical Computer Science, 137–156.

[23] Sumit Ganguly, Minos Garofalakis, and Rajeev Rastogi. 2004. Processing data-stream join aggregates using skimmed

sketches. In International Conference on Extending Database Technology. Springer, 569–586.
[24] Sumit Ganguly, Phillip B Gibbons, Yossi Matias, and Avi Silberschatz. 1996. Bifocal sampling for skew-resistant join

size estimation. In Proceedings of the 1996 ACM SIGMOD international conference on management of data. 271–281.
[25] Sumit Ganguly, Deepanjan Kesh, and Chandan Saha. 2005. Practical algorithms for tracking database join sizes. In

International Conference on Foundations of Software Technology and Theoretical Computer Science. Springer, 297–309.
[26] Peter J Haas, Jeffrey F Naughton, S Seshadri, and Arun N Swami. 1993. Fixed-precision estimation of join selectivity.

In Proceedings of the twelfth ACM SIGACT-SIGMOD-SIGART symposium on Principles of database systems. 190–201.
[27] F. M. Harper and J. A. Konstan. 2015. The MovieLens Datasets. ACM Transactions on Interactive Intelligent Systems

(TiiS) (2015).
[28] Yannis E Ioannidis and Stavros Christodoulakis. 1991. On the propagation of errors in the size of join results. In

Proceedings of the 1991 ACM SIGMOD International Conference on Management of data. 268–277.
[29] Yannis E Ioannidis and Stavros Christodoulakis. 1993. Optimal histograms for limiting worst-case error propagation in

the size of join results. ACM Transactions on Database Systems (TODS) 18, 4 (1993), 709–748.
[30] Yannis E Ioannidis and Viswanath Poosala. 1995. Balancing histogram optimality and practicality for query result size

estimation. Acm Sigmod Record 24, 2 (1995), 233–244.

[31] Yesdaulet Izenov, Asoke Datta, Florin Rusu, and Jun Hyung Shin. 2021. COMPASS: Online Sketch-based Query

Optimization for In-Memory Databases. In Proceedings of the 2021 International Conference on Management of Data.
804–816.

[32] Konstantin Kutzkov, Mohamed Ahmed, and Sofia Nikitaki. 2015. Weighted similarity estimation in data streams. In

Proceedings of the 24th ACM International on Conference on Information and Knowledge Management. 1051–1060.
[33] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and Thomas Neumann. 2015. How good

are query optimizers, really? Proceedings of the VLDB Endowment 9, 3 (2015), 204–215.
[34] Viktor Leis, Bernhard Radke, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and Thomas Neumann.

2018. Query optimization through the looking glass, and what we found running the join order benchmark. The VLDB
Journal 27, 5 (2018), 643–668.

[35] Haoyu Li, Qizhi Chen, Yixin Zhang, Tong Yang, and Bin Cui. 2022. Stingy sketch: a sketch framework for accurate and

fast frequency estimation. Proceedings of the VLDB Endowment 15, 7 (2022), 1426–1438.
[36] Yuanpeng Li, Xiang Yu, Yilong Yang, Yang Zhou, Tong Yang, Zhuo Ma, and Shigang Chen. 2021. Pyramid Family:

Generic Frameworks for Accurate and Fast Flow Size Measurement. IEEE/ACM Transactions on Networking 30, 2 (2021),

586–600.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 81. Publication date: May 2023.

81:26 Feiyu Wang, Qizhi Chen, Yuanpeng Li, Tong Yang, Yaofeng Tu, Lian Yu, and Bin Cui

[37] Zaoxing Liu, Ran Ben-Basat, Gil Einziger, Yaron Kassner, Vladimir Braverman, Roy Friedman, and Vyas Sekar. 2019.

Nitrosketch: Robust and general sketch-based monitoring in software switches. In Proceedings of the ACM Special
Interest Group on Data Communication. 334–350.

[38] Gurmeet Singh Manku and Rajeev Motwani. 2002. Approximate frequency counts over data streams. In VLDB’02:
Proceedings of the 28th International Conference on Very Large Databases. Elsevier, 346–357.

[39] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. 2005. Efficient computation of frequent and top-k elements

in data streams. In International Conference on Database Theory. Springer.
[40] Jayadev Misra and David Gries. 1982. Finding repeated elements. Science of computer programming 2, 2 (1982), 143–152.
[41] Meikel Poess. 2018. TPC-DS. Springer International Publishing, Cham, 1–8. https://doi.org/10.1007/978-3-319-63962-

8_127-1

[42] Viswanath Poosala and Yannis E Ioannidis. 1997. Selectivity estimation without the attribute value independence

assumption. In VLDB, Vol. 97. Citeseer, 486–495.
[43] David MW Powers. 1998. Applications and explanations of Zipf’s law. In New methods in language processing and

computational natural language learning.
[44] Pratanu Roy, Arijit Khan, and Gustavo Alonso. 2016. Augmented sketch: Faster and more accurate stream processing.

In Proceedings of the 2016 International Conference on Management of Data. 1449–1463.
[45] Florin Rusu and Alin Dobra. 2007. Statistical analysis of sketch estimators. In Proceedings of the 2007 ACM SIGMOD

international conference on Management of data. 187–198.
[46] Florin Rusu and Alin Dobra. 2008. Sketches for size of join estimation. ACM Transactions on Database Systems (TODS)

33, 3 (2008), 1–46.

[47] Robert Schweller, Zhichun Li, Yan Chen, et al. 2007. Reversible sketches: enabling monitoring and analysis over

high-speed data streams. IEEE/ACM Transactions on Networking (ToN) 15, 5 (2007), 1059–1072.
[48] Christian Timmerer and Anatoliy Zabrovskiy. 2019. Automating QoS and QoE Evaluation of HTTP Adaptive Streaming

Systems. ZTE Communications 17, 1 (2019), 18–24.
[49] Daniel Ting. 2018. Data sketches for disaggregated subset sum and frequent item estimation. In Proceedings of the 2018

International Conference on Management of Data. 1129–1140.
[50] David Vengerov, Andre Cavalheiro Menck, Mohamed Zait, and Sunil P Chakkappen. 2015. Join size estimation subject

to filter conditions. Proceedings of the VLDB Endowment 8, 12 (2015), 1530–1541.
[51] S. Venkataraman, D. Xiaodong Song, P. B. Gibbons, and A. Blum. 2005. New Streaming Algorithms for Fast Detection

of Superspreaders. In NDSS.
[52] TaiNing Wang and Chee-Yong Chan. 2020. Improved correlated sampling for join size estimation. In 2020 IEEE 36th

International Conference on Data Engineering (ICDE). IEEE, 325–336.
[53] Kaicheng Yang, Yuanpeng Li, Zirui Liu, Tong Yang, Yu Zhou, Jintao He, Tong Zhao, Zhengyi Jia, Yongqiang Yang,

et al. 2021. SketchINT: Empowering INT with TowerSketch for Per-flow Per-switch Measurement. In 2021 IEEE 29th
International Conference on Network Protocols (ICNP). IEEE, 1–12.

[54] Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi Gong, Yang Zhou, Rui Miao, Xiaoming Li, and Steve Uhlig. 2018.

Elastic sketch: Adaptive and fast network-wide measurements. In Proceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication. 561–575.

[55] Feng Yu, Wen-Chi Hou, Cheng Luo, Dunren Che, and Mengxia Zhu. 2013. CS2: a new database synopsis for query

estimation. In Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data. 469–480.
[56] Qixun ZHANG, Jing HAN, Li CHENG, Baisheng ZHANG, and Zican GONG. 2022. Approach to Anomaly Detection in

Microservice System with Multi-Source Data Streams. ZTE Communications 20, 3 (2022), 85–92.
[57] Yinda Zhang, Jinyang Li, Yutian Lei, Tong Yang, Zhetao Li, Gong Zhang, and Bin Cui. 2020. On-off sketch: A fast and

accurate sketch on persistence. Proceedings of the VLDB Endowment 14, 2 (2020), 128–140.
[58] Bohan Zhao, Xiang Li, Boyu Tian, Zhiyu Mei, and Wenfei Wu. 2021. DHS: Adaptive Memory Layout Organization of

Sketch Slots for Fast and Accurate Data Stream Processing. In Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery & Data Mining. 2285–2293.

[59] Zheng Zhong, Shen Yan, Zikun Li, Decheng Tan, Tong Yang, and Bin Cui. 2021. BurstSketch: Finding bursts in data

streams. In Proceedings of the 2021 International Conference on Management of Data. 2375–2383.
[60] Yang Zhou, Tong Yang, Jie Jiang, Bin Cui, Minlan Yu, Xiaoming Li, and Steve Uhlig. 2018. Cold Filter: AMeta-Framework

for Faster and More Accurate Stream Processing. In SIGMOD Conference.

Received July 2022; revised October 2022; accepted November 2022

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 81. Publication date: May 2023.

https://doi.org/10.1007/978-3-319-63962-8_127-1
https://doi.org/10.1007/978-3-319-63962-8_127-1

	Abstract
	1 Introduction
	2 Background
	2.1 Problem Definition
	2.2 Sketch-Based Inner-product Estimation

	3 JoinSketch
	3.1 Rationale of JoinSketch
	3.2 Data Structure and Operations
	3.3 Inner-product Estimation
	3.4 Optimizations
	3.5 Extension to Multi-Way Joins

	4 Theoretical Analysis
	4.1 Unbiasedness of JoinSketch
	4.2 Variance of JoinSketch
	4.3 Effectiveness of Finding Frequent Items
	4.4 Analysis on Fingerprint

	5 Applications
	5.1 Applications in Data Stream Processing
	5.2 Applications in Database
	5.3 Applications in Cosine Similarity

	6 Experimental Results
	6.1 Experimental Setup
	6.2 Experiments on Accuracy
	6.3 Experiments on Stability
	6.4 Experiments on Throughput
	6.5 Experiments on Finding Frequent Items
	6.6 Experiments on Frequency Estimation
	6.7 Experiments on Parameters

	7 Related Work
	7.1 Inner-product Estimation
	7.2 Finding Frequent Items
	7.3 Separating Frequent and Infrequent Items

	8 Conclusion
	Acknowledgments
	References

