JoinSketch: A Sketch Algorithm for Accurate and Unbiased
Inner-Product Estimation

FEIYU WANG, QIZHI CHEN, YUANPENG LI, and TONG YANG'T, Peking University, China
and Pengcheng Laboratory, China
YAOFENG TUi, ZTE Corporation, China

LIAN YU, Peking University, China
BIN CUI, Peking University, China

The inner-product estimation is the base of many important tasks in various big data scenarios, including
measuring the similarity of streams in data stream processing, estimating join size in the database, and
analyzing cosine similarity in various applications. Sketch, as a class of probabilistic algorithms, is promising
in inner-product estimation. However, existing sketch solutions suffer from low accuracy due to neglecting the
high skewness of real data. In this paper, we design a new sketch algorithm for accurate and unbiased inner-
product estimation, namely JoinSketch. To improve accuracy, JoinSketch consists of multiple components and
records items with different frequencies in different components. We theoretically prove that JoinSketch is
unbiased and has lower variance than the well-known AGMS and Fast-AGMS sketch. The experimental results
show that JoinSketch improves the accuracy of inner-product by 10 times on average while maintaining a
comparable throughput. All code is open-sourced at Github [2].

CCS Concepts: » Theory of computation — Sketching and sampling,.
Additional Key Words and Phrases: inner-product estimation, sketch, data streams, join size, join cardinality

ACM Reference Format:

Feiyu Wang, Qizhi Chen, Yuanpeng Li, Tong Yang, Yaofeng Tu, Lian Yu, and Bin Cui. 2023. JoinSketch: A
Sketch Algorithm for Accurate and Unbiased Inner-Product Estimation. Proc. ACM Manag. Data 1, 1, Article 81
(May 2023), 26 pages. https://doi.org/10.1145/3588935

1 INTRODUCTION

In many big data scenarios, the data comes as a stream at high speed. There is a growing interest in
processing and analyzing data streams in a single pass to offer statistics of the data stream, including
frequencies [11, 17], heavy hitters [8, 39], heavy changes [6, 47], e.t.c. [22, 48, 51, 56, 57, 59]. The
inner-product of two data streams is an important statistic for data stream analysis, which is defined

“Tong Yang (yangtongemail@gmail.com) is the corresponding author.

fTong Yang (yangtongemail@gmail.com), National Key Laboratory for Multimedia Information Processing, School of
Computer Science, Peking University, also with Peng Cheng Laboratory, Shenzhen, China.

#Yaofeng Tu (tu.yaofeng@zte.com.cn) is the corresponding author.

Authors’ addresses: Feiyu Wang, (wangfeiyu@pku.edu.cn); Qizhi Chen, (hzyoi@pku.edu.cn); Yuanpeng Li, (liyuanpeng@
pku.edu.cn); Tong Yang, (yangtongemail@gmail.com), National Key Laboratory for Multimedia Information Processing,
School of Computer Science, Peking University, Beijing, China and Pengcheng Laboratory, Shenzhen, China; Yaofeng
Tu, (tu.yaofeng@zte.com.cn), ZTE Corporation, Nanjing, China; Lian Yu, (lianyu@ss.pku.edu.cn), School of Software and
Microelectronics, Peking University, Beijing, China; Bin Cui, (bin.cui@pku.edu.cn), National Key Laboratory for Multimedia
Information Processing, School of Computer Science, Peking University, Beijing, China.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

2836-6573/2023/5-ART81 $15.00

https://doi.org/10.1145/3588935

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 81. Publication date: May 2023.

https://doi.org/10.1145/3588935
https://doi.org/10.1145/3588935

81:2 Feiyu Wang, Qizhi Chen, Yuanpeng Li, Tong Yang, Yaofeng Tu, Lian Yu, and Bin Cui

as the inner-product of their frequency vectors and the inner-product is equal to the size of the
join of two data streams (see details in 2.1). We need to track the inner-product of two data streams
in many scenarios. First, in data stream scenarios, the inner-product can be used to measure the
similarity of two data streams, which is important in network measurement and data mining
applications. For example, in data stream scenarios such as network flows in routers and web clicks
in servers, there is a need to track the inner-product of different streams to help analyze the current
running situation of the network. Second, it is significant in database systems to estimate the join
size for the query optimizer[14, 18, 33, 34]. In some cases of database systems, we need to treat all
attribute values from a large table as a data stream[31] because the size of database tables is too
large that we can only process them in one pass. Third, the cosine similarity of two data streams
can be derived from the inner-product and is helpful for some data analysis tasks. However, it is
impracticable and unnecessary to track the exact inner-product in data stream scenarios because of
the high time cost and space cost to compute the exact statistic.

Researchers turn to probabilistic data structures for fast and accurate inner-product estimation.
However, designing an appropriate algorithm is a great challenge because of the high speed and
the huge size of data streams. Meanwhile, unbiased estimation is required in some distributed
scenarios because biased estimation will lead to error accumulation and unbiased estimation is of
theoretical elegance. Hence, the ideal inner-product estimation algorithms are supposed to meet
three requirements. First, the algorithms have to process the data in one pass, and the algorithms are
supposed to be very fast since the data stream comes at a rather high speed. Second, the accuracy of
inner-product estimation should be high enough under small memory usage because the available
memory in real scenarios such as routers is very limited. Third, the estimation provided by the
algorithm is supposed to be unbiased.

Sketches are a class of hash-based probabilistic algorithms which is appropriate for data stream
processing. There are several works focusing on sketch-based solutions for inner-product estimation,
including the AGMS sketch [4, 5], the Fast-AGMS sketch [15], the Count-Min sketch [17], e.t.c.
[23, 25].

The AGMS sketch [4, 5] uses a single counter to estimate the item ! frequency of a data stream. It
increments/decrements the counter with an equal probability when inserting an item. To estimate
the inner-product of two data streams, one can simply multiply the AGMS sketch counters associated
with the two data streams. However, the AGMS sketch suffers from a big variance and thus a high
estimation error. To reduce the variance, researchers use multiple counters and take the median
number as the estimation, at the cost of low throughput. Based on the AGMS sketch, the Fast-AGMS
sketch [15] uses multiple hash functions to locate the counters to update, which significantly
accelerates the insertion operation. The Count-Min sketch consists of an array of counters and is
associated with multiple hash functions. It only increments the hashed counters when inserting
an item. The inner-product is estimated by adding up the products of the corresponding counters
of two Count-Min sketches. These algorithms are designed as universal algorithms which are
capable of the inner-product estimation for data streams of various data distributions. However,
in the scenarios of real data, their accuracy is usually poor because the real data often obeys
unbalanced distribution. Real data usually consists of a few frequent items and many infrequent
items. Hash collisions involving frequent items worsen the accuracy of inner-product estimation a
lot. The Skimmed sketch [23] and the Red sketch [25] propose to estimate the inner-product by
estimating the inner-product of frequent items and infrequent items separately. However, they
require extensive computation to find frequent items before estimating the inner-product and need

IWe use “item” to represent an element in a data stream. A data stream is made of many items, and each item could appear
more than once. For example, the item can be a 5-tuple in network measurement or a value from a database table.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 81. Publication date: May 2023.

JoinSketch: A Sketch Algorithm for Accurate and Unbiased Inner-Product Estimation 81:3

lek[1 1]1]1] [tk ool 1 [1 |1 | [ik[ik][2 11|
(a) Hash collisions between frequent (b) Hash collisions between frequent (c) Hash collisions between infrequent
items lead to great error. items and infrequent items lead to rel- items lead to small error, which is ac-
atively big error. ceptable.

Fig. 1. Types of Hash Collisions.

to get all item IDs in advance, which means these solutions are not one-pass and not practical
consequently.

We propose JoinSketch to provide accurate, fast, and unbiased inner-product estimation for
data streams. JoinSketch is based on a key observation that the real data often obeys unbalanced
distribution such as Zipf [3, 43]. To take advantage of the natural characteristic of real data, we
design JoinSketch to distinguish frequent items from the whole data and record them separately
from infrequent items to improve accuracy.

Real data often obeys unbalanced distribution and is high-skewed in many scenarios. Most
data items are infrequent, while only a few data items are very frequent. The mixture of frequent
items and infrequent items is the key resource of the estimation error because the error of the
inner-product estimation will be huge if hash collisions, especially the ones between frequent items
and hash collisions between frequent items and infrequent items occur. The hash collisions can
be classified into 3 types, (a) hash collisions between frequent items, (b) hash collisions between
frequent items and infrequent items, and (c) hash collisions between infrequent items. Different
types of hash collisions account for the inner-product estimation error to different extents. We
illustrate how different types of hash collisions affect the inner-product estimation in Figure 1.
Let’s consider a data stream F and it consists of 6 distinct items. The frequency vector of F is
f = (fi, fas - fo) = (1000, 1000, 1, 1,1, 1) where f; represents the frequency of i-th item e;. We
take the Count-Min sketch with 5 counters and one hash function as an example. For brevity and
convenience, we consider inner-product between F and itself. The true value of the inner-product
is J = f © f = 2,000,004. As shown in Figure 1(a), type (a) hash collisions lead to a large error,
frequent items e; and e; are over-estimated by 1000, and the inner-product is fa = 4,000, 004, which
is about two times as the true value. As shown in Figure 1(b), type (b) hash collisions bring big error
to the frequency estimation of the infrequent item e4 because ey is hashed to the same counter as
the frequent item e,. The estimated frequency of e4 is 1001, which is 1000 times larger than its true
frequency. The inner-product estimation is J, = 2, 002, 004. Figure 1(c) is an ideal situation where
there is only a type (c) hash collision between two infrequent items es and es. The estimated value of
inner-product is J, = 2,000, 006. Type (c) hash collisions lead to very small errors in inner-product
estimation, which is acceptable.

JoinSketch consists of three components: the frequent part, the medium part and the infrequent
part. The frequent part is a hash table used to record frequent items accurately because the frequent
items are few yet important. The infrequent part is a Fast-AGMS sketch used to record infrequent
items. The infrequent part only costs a small amount of memory since the frequency of items in
infrequent part is so low that we can use small counters in infrequent part. For example, we can use
only 8-bit counters in the infrequent part. The medium part is the key component of JoinSketch. It
distinguishes frequent items on the basis of item frequency. JoinSketch firstly inserts an item to the
medium part temporarily. If it grows up to exceed a predefined threshold T, it will be recorded in

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 81. Publication date: May 2023.

81:4 Feiyu Wang, Qizhi Chen, Yuanpeng Li, Tong Yang, Yaofeng Tu, Lian Yu, and Bin Cui

the frequent part as a frequent item. Otherwise, it is likely to be eliminated to the infrequent part
as an infrequent item if there is no room for new-come items in the medium part.

JoinSketch stores items separately in three components. For every component of JoinSketch,
we query the estimation of partial inner-product between it and every component of another
JoinSketch which is constructed from another data stream. Thus, the inner-product can be derived
from nine pieces (see details in Section 3.3). It is notable that the frequent part and the medium
part record the frequency with no error. The infrequent part is a Fast-AGMS sketch and provides
unbiased inner-product estimation. Combining the above two characteristics, it can be proved that
JoinSketch provides unbiased inner-product estimation (see details in Section 4.1).

The advantages of JoinSketch over existing solutions are twofold. On the one hand, by separating
frequent items and infrequent items, we improve the accuracy by reducing hash collisions. To be
specific, we totally eliminate type (a) hash collisions and type (b) hash collisions because frequent
items are recorded in the frequent part. On the other hand, since the frequencies of items in the
infrequent part are small, we can use smaller counters than existing sketches, which means more
counters under the same memory usage. More counters lead to fewer type (c) hash collisions
between infrequent items. To sum up, JoinSketch improves the accuracy by reducing all of the 3
types of hash collisions simultaneously.

The experimental results show that the error of JoinSketch is 10 times on average smaller than
the state-of-the-art on high-skewed datasets. On datasets with little skewness, JoinSketch can still
perform better than existing algorithms. The code is open-sourced at Github [2].

Key Contributions:

e We propose JoinSketch based on the idea of separating frequent items and infrequent items to
improve the accuracy of the inner-product estimation.

o We theoretically prove that the estimation given by JoinSketch is unbiased and we give a mathe-
matical analysis of the variance of the estimation.

e We conduct extensive experiments to evaluate the performance of JoinSketch on various synthetic
and real-world datasets. The results show that on high-skewed datasets, the error of JoinSketch
is 10 times on average smaller than the state-of-the-art.

2 BACKGROUND

In this section, we first present the definition of the inner-product estimation, then introduce the
well-known AGMS and Fast-AGMS sketch, which are the basis of our JoinSketch.

2.1 Problem Definition

Let F be a data stream with S items and G be another data stream. We use e; to represent a data
item in a data stream. Assume D is the domain of all items. [D| = N and D = {eg,, ...,eg,, ..., gy }-
F = [ey, ..., €, ..., es], where each item e; belongs to D. Note that items in D are distinct, and items
in F or G may not be. For the data stream F, we define the frequency vector f = (fi, ..., fi, .- fN)
where f; represents the frequency of the item eg,. Similarly, we have the frequency vector of G, and
g = (g1, .- Gi ---» gN). The inner-product of two data streams F and G is defined as

N
]=f®9=Zﬁ'9i- (1)

Join predicate between F and G outputs all tuples (e;, ej) where e; = ej and e; € F, e; € G. The
inner-product is equivalent to the join size.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 81. Publication date: May 2023.

JoinSketch: A Sketch Algorithm for Accurate and Unbiased Inner-Product Estimation 81:5

2.2 Sketch-Based Inner-product Estimation

Sketches are a variety of probabilistic data structures to approximate some statistical characteristics
of big data. Sketch algorithms are widely used in big data scenarios, especially in high-speed data
stream processing and analyzing. The AGMS sketch[4, 5] and Fast-AGMS sketch [15] are typical
sketch algorithms for the task of inner-product estimation.

2.2.1 AGMS Sketches. The AGMS sketch [4, 5] is the first sketch-based algorithm for inner-product
estimation. An AGMS sketch consists of only a single counter sk(F) that summarizes all of the
frequency information of a data stream. The AGMS sketch is associated with &, a family of {+1, -1}
random variables and 4-wise independent. For every item ¢; in data stream F = [ey, ey, ..., €s], the
AGMS sketch first calculates £(e;) and then add it to its single counter. The sketch counter sk(F)
can be calculated as follows:
sk(F) = ' &(er).)
e;eF
The standard technique to estimate the inner-product is to construct AGMS sketches for data
streams F and G, respectively, with the same random function &. The inner-product of data stream
F and G can be estimated as:

J = Est(J) = sk(F) x sk(G). (3)

The estimator suffers from a big variance. Thus, it is required to use multiple independent single
AGMS sketches to improve accuracy by taking the median or average of these sketches. However,
this technique leads to poor throughput and thus is impractical.

2.2.2 Fast-AGMS Sketches. A Fast-AGMS sketch [15] consists of an array of m counters. Besides
the random function ¢, the Fast-AGMS sketch has a hash function h, which is used to hash an
item to a random counter. For item e; in data stream F, the Fast-AGMS sketch first calculates A(e;)
and updates the h(e;)%m-th counter (denoted as sk(F)[h(e;)%m]) by adding é(e;). The Fast-AGMS
sketch is capable to estimate the frequency of e; by the product sk(F)[h(e;)%m] X £(e;). The hash
function h helps reduce the number of counters to be updated when inserting a new item. Compared
with the AGMS sketch, under the same space usage, the Fast-AGMS sketch has the same variance
as the AGMS sketch but lower update and query time complexity.

As for inner-product estimation, the Fast-AGMS sketches for data streams F and G are constructed
in advance with the same hash function h and random function &. The inner-product estimation is
the summation of the product of corresponding counters of the two Fast-AGMS sketches. In other
words, if we view the Fast-AGMS sketch as a column vector, the estimation can be written as:

. U —_—— —
J=Est(]) = Z sk(F)[i] x sk(G)[i] = sk(F)T - sk(G). 4)
=1

The Fast-AGMS sketch also suffers from hash collisions. If two or more items with high frequency
are hashed into the same counter, the accuracy of the inner-product estimation will be poor. In
practice, researchers usually use the median estimation of multiple Fast-AGMS sketches to improve
accuracy.

3 JOINSKETCH

In this section, we first present the rationale of JoinSketch. Then we describe the data structure and
operations of JoinSketch. After that, we show how JoinSketch estimates the inner-product of two
data streams. Finally, we present some optimization techniques for JoinSketch. We list the symbols
used frequently in this paper in Table 1.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 81. Publication date: May 2023.

81:6 Feiyu Wang, Qizhi Chen, Yuanpeng Li, Tong Yang, Yaofeng Tu, Lian Yu, and Bin Cui
Table 1. Symbols Frequently Used in This Paper.
Symbols Meaning
F,G a data stream
f.g a frequency vector
D the domain of items and D = {eﬁl, €8ys -+ eﬁN}

the cardinality of D and N = |D|

N
fi the frequency of i-th item eg,

T a predefined threshold for frequent items
J

J

the inner-product of F and G

the estimated inner-product of F and G

MP[i] the i*" bucket in the medium part
Bl[i][e].counter | the counter of item e if e exists in B[i]
H(.) the hash function used in the frequent part
H,(.) the hash function used in the medium part
hi(.) the i’® hash function in the infrequent part
&Q) the i’® random function in the infrequent part

@\i Frequent Part
Frequent (e1,15+ 1) :

1

:

I

item H(e) ' TSR !

Medium Part e ; > (e :
(es,1) | 1| (s 10) | :
| / ' | [

(e7,2) | (ez,9+1) [Clear!) I | :
@d | @b o, TSR] oo]
o @LEET IR
H,(e) =200 (7 15| 0 !

@@ " Infrequent I
item EI OM—sl |11| 1 “

Fig. 2. Data Structure of JoinSketch.

3.1 Rationale of JoinSketch

The key idea of JoinSketch is to distinguish frequent items and infrequent items from mixed data
to improve the accuracy of inner-product estimation. JoinSketch consists of three components: the
infrequent part, the frequent part, and the medium part. The infrequent part is a Fast-AGMS sketch
used to record infrequent items. The frequent part is a hash table used to record frequent items. The
medium part is the key component of JoinSketch, which separates items based on their frequency.
It is used to distinguish frequent items from all data items. We organize these three components as
shown in Figure 2. When inserting an item, JoinSketch first accumulates it in the medium part. If
the frequency of an item grows big enough and exceeds a predefined threshold T, it is supposed to
be a frequent item and be stored in the frequent part. Otherwise, it is supposed to be stored in the
medium part or the infrequent part if there is no room for new-come items in the medium part.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 81. Publication date: May 2023.

JoinSketch: A Sketch Algorithm for Accurate and Unbiased Inner-Product Estimation 81:7

3.2 Data Structure and Operations

3.2.1 Data Structure. As shown in Figure 2, the data structure of JoinSketch consists of three
components, including the frequent part, the medium part and the infrequent part from top to
bottom.

Frequent part: The frequent part FP is a hash table of k buckets and is associated with a hash
function H(.). Each bucket of the frequent part consists of ¢ entries. Each entry stores an item and
its current frequency.

Infrequent part: The infrequent part IFP is a Fast-AGMS sketch. Specifically, the infrequent part
consists of d arrays (IFP;,[FP,,- - -, IFP;). Each array consists of w counters and is associated with
a hash function h;(.) and a random function &;(.).

Medium part: The medium part MP is the key component of JoinSketch. As shown in Figure 2, the
data structure of the medium part is an array of [buckets, and each bucket includes m entries. Each
entry is composed of an item and a counter. The medium part is associated with a hash function
Hp(.).

3.2.2 Operations. JoinSketch supports two operations: inserting an item and looking up the
frequency of an item.

Algorithm 1: Insertion of medium part.

Input: Item e
1 h«— Hy,(e)
2 if e € MP[h] then
3 MP[h][e].counter «— MP[h]|[e].counter + 1
4 if MP[h][e].counter < T then

5 L return

6 else

7 insert (e, MP[h][e].counter) to FP
8 clear MP[h][e]

9 return

10 else if MP[h] is not full then
11 insert (e, 1) to an empty entry of MP[h]
12 return

13 else

14 y « argmin,(MP[h][y].counter)

15 insert (y, MP[h][y].counter) to IFP

16 clear MP[h][y] and insert (e, 1) to MP[h]
17 return

Insertion: When an item e is inserted, JoinSketch first checks whether it is stored in the frequent
part. If so, we simply increment its counter in the frequent part. Otherwise, the item will be
inserted into the medium part. The medium part hashes e to bucket MP[h] using an associated
hash function H,(.), where h = Hp,(e). There are three different cases according to whether bucket
MP[h] contains item e. The pseudo-code is shown in Algorithm 1.

Case 1 (line 2-9): If bucket MP[h] contains item e, the counter of item e will be increased by 1.
Then we check the updated counter. If the updated frequency of item e is less than threshold T,

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 81. Publication date: May 2023.

81:8 Feiyu Wang, Qizhi Chen, Yuanpeng Li, Tong Yang, Yaofeng Tu, Lian Yu, and Bin Cui

the insertion ends. Otherwise, we insert e into the frequent part with the current frequency and
remove it from the medium part.

Case 2 (line 10-12): If bucket MP[h] does not contain item e but there exists at least one empty
entry, we insert item e into an empty entry of bucket MP[h].

Case 3 (line 13-17): If bucket MP[h] does not contain item e and it is full, we need to evict an entry
to make room for item e. We select the smallest item y in bucket MP[h]. Item y is believed to be an
infrequent item and is then inserted into the infrequent part.

Example I: As shown in Figure 2, the frequent part and the medium part of JoinSketch consist of
multiple buckets. Each bucket consists of 2 entries. The infrequent part is a Fast-AGMS sketch with
three arrays. The threshold of frequent item T = 10. When inserting item e; to JoinSketch, we first
check whether e, is in the frequent part: we compute hash function H(e;) to locate the 2"¢ bucket
in the frequent part. Since e; is in the bucket, we simply increment the counter by 1 to 16.

Example II: When inserting item e, to JoinSketch, e, is not in the frequent part. Therefore, we
insert it to the medium part: we compute hash function h,,(e,) to locate the 2" bucket in the
medium part. e, is in the bucket, therefore, we increment the corresponding counter by 1 to 10.
After that, we compare the counter with the threshold T. 10 > T, therefore, we insert e, with
frequency 10 to the frequent part, and remove it from the medium part.

Example III: When inserting item es to JoinSketch, e; is not in the frequent part. Therefore, we

insert it to the medium part: we locate it to the 37 bucket. The bucket is full, therefore, we remove
the least frequent item e4 from the bucket and insert it into the infrequent part. Finally, we insert
e3 with frequency 1 into the bucket.
Discussion on the data structure: Our solution is a 3-part design. It is also feasible to combine
the frequent part and medium part into one and get a 2-part design. Indeed, the 2-part design is
simple and easy to deploy. 3-part design is a little more complicated but fine-grained. The frequent
part is supposed to store items with a larger frequency than the medium part. Meanwhile, we use
bigger counters in the frequent part and smaller counters in the medium part, which can further
save memory usage. In Section 3.4.3, we present an optimization technique using fingerprints,
which can also benefit from the 3-part design.

Algorithm 2: Lookup of JoinSketch
Input: Item e
Output: The frequency estimation of item e
1 ret 0
2 if e € FP[H(e)] then
3 L ret+ = FP[e].counter

4 elseif e € MP[H,,(e)] then
5 L ret+ = MP[H,,(e)][e].counter

6 fori=1—ddo

7 L S[l] «— IFPl[hl(e)] X §i(€)
8 ret+ = median,<j<q(S[i])

9 return ret

Lookup (frequency estimation): Besides the inner-product estimation (see details in Section
3.3), one can use JoinSketch to estimate an item’s frequency. The pseudo-code for lookup operation
is shown in Algorithm 2. JoinSketch initialize ret with 0 in the beginning (line 1). To look up the
frequency of an item e, JoinSketch first checks whether item e exists in the frequent part or the

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 81. Publication date: May 2023.

JoinSketch: A Sketch Algorithm for Accurate and Unbiased Inner-Product Estimation 81:9

medium part (line 2-5). If so, add the corresponding counter’s value to ret. Afterwards, JoinSketch
will look up e in the infrequent part. The Infrequent part is associated with d hash functions.
JoinSketch locates these d hashed counters and then adds the median value of the counters to ret
(line 6-8). JoinSketch returns ret as the frequency estimation of item e.

Discussion on Lookup: Note that we always query the infrequent part for frequency estimation.
The reason is as follows. For an arbitrary item e, 1) if it does not exist in the frequent part or the
medium part, we can tell that all of its instances are recorded in the infrequent part. In this case,
JoinSketch only needs to look up its frequency in the infrequent part. 2) If e exists in the frequent
part or the medium part, however, we are faced with a more complicated situation. The counter
value will be the partial frequency of e if some instances of e have been evicted to the infrequent
part before it grows into a frequent item. 2.1) If JoinSketch never evicts e into infrequent part, the
counter value should be the true value of e’s frequency. 2.2) Otherwise, it is an under estimation.
Because we do not use an additional flag to indicate whether the above eviction occurs to keep
the data structure concise, we choose to always look up the infrequent part to obtain unbiased
frequency estimation. In addition, it is also feasible to only return the counter value as the estimated
frequency and we compare the accuracy of these two methods in Section 6.

Discussion on frequency estimation and inner-product estimation: Indeed, JoinSketch is a
frequency sketch that does inner-product estimation. Using current evaluation metrics, nevertheless,
we observe that accurate frequency estimation does not always lead to accurate inner-product
estimation. Prior work usually evaluates the performance of sketch algorithms using metrics of
AAE (absolute average error) and ARE (average relative error). Unfortunately, these metrics can not
reflect the accuracy for inner-product estimation of sketches. An example is as follows. Consider
we have two data streams F and G in which there are two items e; and e;. The frequency vectors of
Fand G are f = (10000, 10) and g = (10001, 11), respectively. Assume the sketch gives an error-free
estimation § = g while the estimation of f is not error-free.

e Example I: Consider two cases and the frequency estimation is ﬁasel = (11000, 11), ﬁasez =
(10001, 1010). The AAE of both the cases is 22X The inner-product estimation is | = figse1 ©

10000+10
g = 110,011,121 for case 1 and J = fease2 © § = 100,031,111 for case 2. The same AAE for
frequency estimation leads to inner-product estimation in sharp contrast.

e Example II: Consider two cases and the frequency estimation is fcasel = (11000, 11), ﬁasez =
(10000, 12). The ARE of both the cases is 10%. The inner-product estimation is J = fmsel 04=
110,011, 121 for case 1 and J = ﬁasez © ¢ = 100,010, 132 for case 2. The same ARE for frequency
estimation leads to inner-product estimation in sharp contrast.

The above example shows that accurate frequency estimation does not indicate the accurate inner-
product estimation. It is still an open question to design new appropriate metrics. We get an insight
that we need to obtain a higher accuracy for frequent items than infrequent items, which motivates
us to separate frequent items from infrequent items. JoinSketch is proposed based on the separation
of items.

3.3 Inner-product Estimation

Given two data streams F and G, we first construct JoinSketch for them, i.e., we insert all items
in F and G into JoinSketch respectively. We name them JoinSketchp and JoinSketchg. As shown
in Figure 2, items are stored in the frequent part, the medium part and the infrequent part. Thus,
the inner-product estimation can be obtained by adding up the inner-product of nine pieces,
including (1) frequent-frequent, (2) frequent-medium, (3) frequent-infrequent, (4) medium-frequent,

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 81. Publication date: May 2023.

81:10 Feiyu Wang, Qizhi Chen, Yuanpeng Li, Tong Yang, Yaofeng Tu, Lian Yu, and Bin Cui

(5) medium-medium, (6) medium-infrequent, (7) infrequent-frequent, (8) infrequent-medium, and
(9) infrequent-infrequent.

Formally, we define frequent vector fr = (fr1, fr2, ..., frn) Where fp; > T fori = 1,..., N, medium
vector fir = (fm, fmz, - fun) where fi; < T and infrequent vector fi = (fi1, fz, .. fin). Let
the frequent vector fr be the partial frequency vector of what has been recorded in the frequent
part. Let the medium vector fys be the partial frequency vector of what has been recorded in the
medium part. Note that the fr is not the frequency vector of the frequent items, but represents the
frequency vector of the instances recorded in the frequent part. For example, if an item eg, is never
evicted to the infrequent part before it grows to be a frequent item, fr; will be the true value of the
frequency of eg,. We have fr; = fi, fui = 0 and f;; = 0. Once JoinSketch evicts eg, to the infrequent
part, some instances of this items are recorded in the infrequent part. In this case, fr; < f; and
fij > 0. Similarly, the fy is the frequency vector of the instances which are recorded in the medium
part. Since an instance of any item is recorded in one and only one part of JoinSketch, we have
f = fr+ fu+ fr and g = gr + gu + g1. The inner-product of F and G can be calculated by

J=fog=(fr+fm+fi) ©(g9r+9gm+g1)
=frOgr+frogm+frogr
+fMOGr+ fMOgm+ fuOgr (5)
+fiOgr +f1Ogm +f1O g
= Jrr + Jem + Jer + Jmr + Jum + Inr + Jie + Jim + Jir-

These nine addends in Equation 5 correspond to the nine pieces above. JoinSketch estimates the
inner-product by estimating the nine pieces respectively. For piece (1) Jrr, JoinSketch compares
every item recorded in the frequent part of JoinSketchp with the one recorded in the frequent
part of JoinSketchg. For the same item, JoinSketch multiplies the corresponding counters and
sums up all products. We estimate (2) Jray (4) Jvr (5) Jum using the same method. For piece (9)
Jir, JoinSketch sums up all of the multiplications of corresponding counters of the infrequent part,
which is the same as the Fast-AGMS sketch. JoinSketch traverses the frequent parts to estimate
(3) Jrr and (7) Jir. For each item in the frequent part of JoinSketchp, we look up the estimated
frequency of the item in the infrequent part of JoinSketchg and then estimate (3) Jr;. Similarly,
we traverse the frequent part of JoinSketchg and then get (7) Jir. The same method is applied to
estimate (6) Jyy and (8) Jia. By adding the results of the above nine pieces, we get the inner-product
estimation of data stream F and data stream G.

3.4 Optimizations

3.4.1 Extension of Frequent Part. Ideally, the size of the frequent part should match the number of
frequent items. If the size of frequent part is too small, a number of frequent items may be lost; if
the size of frequent part is too large, memory will be wasted. Estimating the number of frequent
items in advance is difficult, so we decide to dynamically extend the size of the frequent part. The
method is borrowed from ElasticSketch [54]. If a bucket in the frequent part is full, we copy the
frequent part and merge the frequent part and the copied one together as the new frequent part.
Suppose the old frequent part contains k buckets. The new one contains 2k buckets, and thus we
change the hash function from H(.)%k to H(.)%(2k). After the extension, half of the items should
be removed. The removal operation can be done incrementally.

3.4.2 Using SIMD Instructions. The medium part and the frequent part consist of / buckets and
each bucket consists of m entries. When inserting an item, it is hashed into a bucket. Afterward,
we need to scan all entries in this bucket to determine whether or not the item exists in this bucket,

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 81. Publication date: May 2023.

JoinSketch: A Sketch Algorithm for Accurate and Unbiased Inner-Product Estimation 81:11

which is costly. To improve insertion performance, we use SIMD (Single Instruction Multiple Data)
instructions to scan a specific hashed bucket [44, 60]. With SIMD, we can scan and compare multiple
entries with a single instruction. In order to make JoinSketch compatible with SIMD, we set the
number of entries m =4 or m = 8.

3.4.3 Fingerprint. We use fingerprints instead of the full item key in order to save memory usage.
The fingerprint of an item e is a fixed-length hash value of the item. For example, we can use a hash
function Hy,, to calculate the fingerprint and the fingerprint of e is Hy, (e). We use the fingerprint
to save memory footprint if the item key is long. The usage of fingerprint, however, is likely to bring
about fingerprint collisions which would downgrade the accuracy of inner-product estimation.
Hence, we use longer fingerprints in the frequent part to avoid fingerprint collisions as much as
possible. We set the length of fingerprint in the frequent part Lr = 32. And we set the length in the
medium part Ly = 22. The reason for using 22-bit fingerprint is that in the experiment we find that
10-bit counters is big enough for the medium part, and the remaining 22 bits of the 32-bit variable
can be used as the fingerprint.

3.4.4 Picking the threshold T. In terms of picking the threshold T, one feasible method is to initialize
T with a moderate value and adjust it according to the status of the frequent part. The initial value
of T can be set according to the total number of items and the estimated number of distinct items
(if available). For example, one can use the average frequency or a small portion of all items as
the initial value. JoinSketch checks the number of items in the frequent part periodically. If the
number of items in the frequent part is small (e.g. < rz - k¢, r is a constant, z is the number of items
inserted to JoinSketch and kc is the total number of entries in the frequent part), it suggests that the
threshold T is too high to find the frequent items and JoinSketch will lower the threshold T. If the
frequent part is extended frequently, which indicates that many items which are not so frequent
are inserted to the frequent part, JoinSketch will take a higher T. In this way, JoinSketch will take a
proper threshold value to separate frequent and infrequent items.

3.5 Extension to Multi-Way Joins

To show how to extend JoinSketch to multi-way join size estimation, we first introduce the concept
of attributes. An item in data streams may consist of several attributes. Let e;.A; be the attribute A;
of the item e;, and let F.A; be the attribute A; of the data stream F. An example of multi-way join
is like

F > G < H where FA; = G.A AG.Ay, = HA, (6)

The typical work for multi-way joins is Compass [31], which uses multi-dimensional Fast-AGMS
sketches. Essentially, JoinSketch is KV tables (the frequent part and the medium part) and a Fast-
AGMS sketch (the infrequent part). The infrequent part perfectly fits into Compass. As for the
KV tables, we modify them for multi-way join as follows. We replace the item key in the frequent
part and the medium part with multiple item keys which are involved in the join. For example, we
record A; for data stream F, A, for data stream H, and both A; and A, for data stream G. We can
obtain the inner-product estimation in the same way as 2-way join.

4 THEORETICAL ANALYSIS
4.1 Unbiasedness of JoinSketch

THEOREM 1. The inner-product estimation of two data streams given by the standard version of
JoinSketch is unbiased.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 81. Publication date: May 2023.

81:12 Feiyu Wang, Qizhi Chen, Yuanpeng Li, Tong Yang, Yaofeng Tu, Lian Yu, and Bin Cui

PRrOOF. Suppose f and g are frequency vectors of two data streams F and G. J is the inner-product
estimation given by JoinSketch and the true value of the inner-product is J. According to Section
3.3, the inner-product estimation is obtained by

J = Jer + Jea + Jrt + Jute + v + It + Jir + Jona + Jir. v
The frequent part and the medium part record a part of all instances of a frequent item with no error

according to their definition, hence we have fp = fr, f;w = fm, gr = gr and gy = gy Therefore, we
have

Jir = fr O gk = fr O fr = JrF
]1;M=ﬁv®g?v[=ﬁ:®fM=]FM

Jvir = fu © gr = fu © fr = Jur ®
Tvimt = fur © gt = fur © fur = Jum-
Further, note that
Jrr=frodi=frog
Jur = fu @ i = fu @ di
)

Jir=fiogr=fiogr
Jim = fi © g = f © gm.
Fast-AGMS gives unbiased estimation for both item frequency and inner-product. Therefore,

E(ﬁ) = f1, E(41) = g; and E(J;;) = Ji;- Hence, the estimation for the remaining five pieces is
unbiased as well. We have that

E(J) = EUrr) + EUrm) + EUr1) + EUmr) + E(mm)
+E(m) +EUrr) +EUim) + E(n)

(10)
= Jrr + Jem + Jpr + Jvr + Jum + Jmr + Jie + Jim + Ji
=].
Therefore, the estimation given by JoinSketch is unbiased. O

Analysis on optimizations: We present several optimization techniques in Section 3.4. The
extension of the frequent part and using SIMD instructions don’t affect the unbiasedness of the
inner-product estimation. The fingerprint, however, will affect the unbiasedness. We discuss the
issue in Section 4.4.

4.2 Variance of JoinSketch

As mentioned in Section 4.1, JoinSketch provides an unbiased estimation of the inner-product. In
this section, we prove the estimation offered by JoinSketch is of less variance, and thus JoinSketch
improves estimation accuracy compared with prior arts. We start from the variance of the estimation
given by the Fast-AGMS sketch.

LEMMA 2. Consider a Fast-AGMS sketch with ng,s; counters. The variance of the inner-product
estimation (denoted as Jras:) is

Var[]F;st] < 2||f||§||g||§/nFast = Brast (11)

according to [45] where f and g is the frequency vector of data streams F and G.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 81. Publication date: May 2023.

JoinSketch: A Sketch Algorithm for Accurate and Unbiased Inner-Product Estimation 81:13

THEOREM 3. The bound of the variance of inner-product estimation J given by JoinSketch satisfies
that

Var[J1 < (I1full3llgrll3 + Ngo 311£l15 + 211 fill3l1grl13) /n

where fu = fr + fu, gu = gr + gm and n is the number of counters in the infrequent part.

Proor. JoinSketch stores the data stream in three components. Note that the frequent part
and the medium part only store the part of all instances of a frequent item with no error. We
can consider the two parts as a whole and thus obtain the inner-product estimation provided by
JoinSketch J from

J=Jou +Jor+Jwv +Ju (12)

where Jyu = fU © gy and fiy = fr + fi. Since the fr and fy are independent of f;, the variance of J
consists of four parts.

VarJ] = Var[Jyu] + Var[Jur] + Var [Jw] + Var[Ju]. (13)
Since there is no error in frequency vector fr and fy, Jou = Juu and the variance of first part is
Var[Jou] = 0. (14)

The variance of the second part Ji; can be derived based on the variance of frequency estimation
of the Fast-AGMS sketch. The variance of frequency estimation of the Fast-AGMS sketch is

Var[fi] < lIfll%/n (15)

where f is the frequency vector and n is the number of counters in the Fast-AGMS sketch. Therefore,

VarlJiil = Var[fy © dr]

. (16)
= fu o Var[gi] < |lfull3llg:ll3/n.
The third part]IAU is symmetric to the second part]{H. The variance of]fU is
Var[Jiw] < llgull3lIfill3/n. (17)

The fourth part Ji; is the estimation from the infrequent part which is a Fast-AGMS sketch. The
formula of the fourth part’s variance is

Var[Jul < 2|Ifil3llgrl|3/n. (18)

Substituting the above results into Equation 13, the bound of variance of the inner-product estima-
tion given by JoinSketch is

Var[J] =Var[Joul + Var[Juil + Var[Jiw] + Var[Jir)

< (I1ful3grll; + lgul 31 fill3 + 211 fill311grl13) /n (19)
=B.

]

THEOREM 4. The bound of JoinSketch is less than the bound of Fast-AGMS, i.e., B < Bpas if
n 2 NFast

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 81. Publication date: May 2023.

81:14 Feiyu Wang, Qizhi Chen, Yuanpeng Li, Tong Yang, Yaofeng Tu, Lian Yu, and Bin Cui

Proor. Since f; > 0 and g; > 0, we have
Brast =2||f 13119113 /nEast = 21l fu + fill3llgu + 91113 /nFast
=2(|lfullz + A2 +2fu ©) Ulgull; + 1191115 + 290 © g1) /nrast
=2(IIful3llgulls + 1 fullZlgr 15 + A Hgu 13 + £l]g:1 13

(20)

+4ft © fi gu © g1 + 2fu © fillgll} + 29u © gil|f113) /nrast

= (I1fullzllgrl1z + lgulZAIE + 211 fil 5 1grl15) /nrast
+Rem/npqs:

where Rem stands for the word remain for brevity.
Rem > (|| fullzllgrll3 + llgullZ A3 + 211 full3lgull3) /nFas (21)
Brast _ 211 £11511gl15/nFast
B (Ilfullllgrll3 + llgull3lIfill5 + 211 fill3lg1113) /n (22)
Rem

M\ Wl llgrll; + gul 114115 + 211 fil131g: 115)
Assume that n > npg, i.e., the number of counters in the infrequent part of JoinSketch is equal
or greater than the number of counters in the Fast-AGMS. No matter how much memory the
frequent part and the medium part consume, Rem > 0 holds. Therefore, Bp,s;/B > 1. The bound
of JoinSketch is less than the bound of Fast-AGMS, i.e., B < Brgs;-]

As stated above, because the frequency of items stored in the infrequent part is relatively low,
we use small counters in the infrequent part. Under the same memory constraint, the assumption
n > npgs usually holds. We show that JoinSketch has a smaller bound of the variance than Fast-
AGMS. Note that Bras: /B may be very big in some cases and it is highly related to how big ||fi/|[5
and ||gy||5 are. Intuitively, the more skewed the data is, the bigger the ratio Bras:/B is. It implies
that JoinSketch is supposed to perform much better when the data is high-skewed.

4.3 Effectiveness of Finding Frequent Items

In this section, we provide theoretical analysis on the effectiveness of finding frequent items
for JoinSketch. Every bucket in the medium part is the same as each other, and every bucket is
independent of each other. We only analyze one bucket and the items hashed to it. Assume that the
number of entries in this bucket is M. Before the formal analysis, we make assumptions about the
data stream to simplify the problem. Since the number of frequent items is rather few compared to
the number of all distinct items, we assume the data stream hashed to the bucket contains only one
frequent item x with frequency ¢ and all of the other items in this data stream appear for one time.
The data stream contains N items in total. We use x; to represent item x that appears for the i-th
time. We use k; to represent the number of other items between 2 consecutive items x; and x;4;.
W.L.O.G., we assume X is the first item, and x; is the last item in this data sequence. Obviously, we
have k; > 0 and 3'2/ k; + £ = N.

THEOREM 5. The probability of finding x a frequent item is

= ki
P(found)zl—ﬂ(l—(l—%)) (23)

i=1

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 81. Publication date: May 2023.

JoinSketch: A Sketch Algorithm for Accurate and Unbiased Inner-Product Estimation 81:15

Proor. Since frequencies of items other than x is 1, once the frequency of x in the medium part
is equal or greater than 2, x will not be replaced anymore. It will grow bigger and bigger and the
medium part will find out it is a frequent item. When x; comes, it will be inserted into a random
entry. Afterward, every item (k; items in total) before x, will bring out a replacement of a random
entry. The probability of replacing x is ﬁ for every replacement. So the probability of that x is not
replaced by other items until x, is (1 — A—l/l)kl. The probability of replacing x; is 1 — (1 — ﬁ)kl.

If x; is replaced by other item before x, comes, the medium part can not distinguish item
x as a frequent item when x; comes. Instead, x; will bring out a replacement and insert item
x with frequency 1 into a random entry. The situation between x; and x5 is the same as the
situation between x; and x;. The probability of that x is replaced by other items before x5 is
1-(1- A—l,l)kz. When x5 comes, the probability for the medium part not to find out x a frequent
itemis (1—(1- ﬁ)kl) X(1-(1- ﬁ)kz). Similarly, the probability for the medium part not to find
out x a frequent item after the last item x; comes is

t—1 ki
P(replace all) = 1—[(1 - (1 - A_l/I)) . (24)

i=1

Therefore, the probability of finding x as a frequent item is

t—1 ki
P(found) =1 —P(replace all) =1 - l_[(1 - (1 - %)) . (25)

[m]
Now we consider the error of the frequent part produced by the medium part. Define £ is the

frequency of x recorded in the medium part or the frequent part. The error er = t — . Note that the
frequent part and the medium part never provide over estimation so that er > 0.

THEOREM 6. E(er) = X, j X [T (1- (1 - 4p)k).

Proor. After the frequency of x grows to 2, the following item x will not produce any error. If
x; makes the frequency grow to 2, the error er = i — 2. Therefore, we have P(er = j),j =0,...,t — 2

. J'+1(1 ki
P(erzj)zl_[1_(1_M) . (26)

Hence, the expectation of er

t t J+1 ki
E(er)=ZjXP(er=j)=ijn(l—(1—%)) (27)
j=1 Jj=1 i=1

[m}
THEOREM 7. If the frequency of item x follows Poisson distribution P(%), E(er) = (Inp - %)2

Proor. If the frequency of item x follows Poisson distribution P(;), the interval k; between x;
and x;4; follows exponential distribution E (%). Therefore, we have k; ~ E(A) = E(ﬁ) and k; is
independent from k; for Vi # j.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 81. Publication date: May 2023.

81:16 Feiyu Wang, Qizhi Chen, Yuanpeng Li, Tong Yang, Yaofeng Tu, Lian Yu, and Bin Cui

Hence, we have

s (-5)1z)

ki (28)
:1_/ (1_i) heHgy = M -M 1)
0 M InM —In(M - 1) +
Since { < 1, we have
t t
E(er) =Zj><P(er =j)= ijgjﬂ
& = (29)
& M N\
=~ =[In R I
(1-9)* M-1 t
]

According to Equation 29, if the number of entries in a bucket (M) is bigger or the proportion of
frequent items to all items is bigger (t/N), E(er) will be smaller.

4.4 Analysis on Fingerprint

The fingerprints in the medium part and the frequent part are used to identify different items
and reduce memory costs. However, fingerprints bring about the problem of fingerprint collisions.
If two or more items, especially frequent items, have the same fingerprint, the accuracy of the
estimation will be degraded a lot. In this section, we analyze how fingerprints affect the accuracy
of the inner-product estimation. Consider a set of N items. A; denotes the random event that there
is no fingerprint collision among i distinct independent items.

LEMMA 8. If the length of the fingerprint is I, the probability of fingerprint collision between two

. . l
items isP(Ay) =1 — (ZZW

N (ol _:
THEOREM 9. The probability of no fingerprint collision between N items is P(An) = %
Proor. We derive P(Ay) from the formula of conditional probability. We have
2! - N
P(AN) = P(Ay-1) X P (An]AN-1) = P(AN-1) X —;
. (30)
_ §i1 (21 - i)
- 2IN
[m}

Table 2. The probability of no hash collision.

Probability | N =4 N =16 N=64 | N=128
=16 1.5E—-04 | 20E-03 | 3.1E-02 | 1.2E-01
1=32 23E—-09 | 3.2E—-08 | 48E—07 | 1.9E—-06

As shown in Table 2, the probability of fingerprint collisions is rather small when the length
of fingerprint I = 32. If fingerprint collisions occur, JoinSketch will regard two or more items as
the same item. In this case, the reported inner-product estimation is expected to be slightly larger.
Such an error is small and can be much smaller when using more bits for the fingerprints.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 81. Publication date: May 2023.

JoinSketch: A Sketch Algorithm for Accurate and Unbiased Inner-Product Estimation 81:17

5 APPLICATIONS

JoinSketch is proposed for accurate and fast inner-product estimation in data stream scenarios. In
Section 5.1, we describe the applications of JoinSketch in data stream scenarios. JoinSketch can
be applied in more one-pass scenarios. In Section 5.2 and Section 5.3, we discuss how to apply
JoinSketch in one-pass scenarios of database and cosine similarity.

5.1 Applications in Data Stream Processing

The inner-product of data streams is an important statistic for data stream processing. For exam-
ple, we need to analyze the correlation between two data streams in many large-scale network
measurement systems. To be specific, tracking the inner-product of abnormal traffic on several
routers can help network administrators analyze the current running status of the network system.
If a link failure happens, a practical network measurement system should be able to allow us to
locate the link failure as soon as possible. In this scenario, the data stream processing is proposed
to be real-time and fast enough. JoinSketch is suitable for data streams’ inner-product estimation.
We can deploy JoinSketch in measurement nodes (e.g., IP routers). The function of JoinSketch is
to provide key statistics of data flows through the router and send the measurement result to the
controller node. The estimation of the inner-product will then be used to analyze the real-time
running status of the network.

5.2 Applications in Database

Inner-product estimation is an essential step in multi-way join. Most systems perform multi-way
join by binary join algorithms, i.e., they iteratively select two tables and join them into intermediate
relations. However, a poor join plan may lead to a large volume of intermediate relations and
result in high computation overhead. Therefore, many existing solutions [9, 23, 31, 50] present to
use sketches to estimate join size in advance and avoid poor plans. JoinSketch supports join size
estimation. Given two tables and join predicates, we build a JoinSketch for each table. Then, we
estimate the inner-product of the two tables as the join size.

5.3 Applications in Cosine Similarity

Cosine similarity is a key metric in many fields of data science, including data mining, natural
language processing, recommendation systems and so on. Cosine similarity computation, however,
is often the bottleneck in some applications with massive volumes of data. Fortunately, it is
acceptable to use the estimated cosine similarity instead of the true value in some cases. For
example, researchers propose to estimate cosine similarity of data streams using the AGMS sketch
in [32].

JoinSketch can be also applied to estimate the cosine similarity in data stream scenarios. To be
specific, cosine similarity can be derived from inner-product as shown below:

fog
JFonGos Gl

After constructing JoinSketch for F and G, we can derive cosine similarity using three inner-product
estimations.

cos(F,G) =

6 EXPERIMENTAL RESULTS

In this section, we provide experimental results of JoinSketch. We present the experimental setup in
Section 6.1. First, data stream scenarios are the main and the most critical scenarios of JoinSketch.
We show the performance of JoinSketch in data stream scenarios compared with prior arts. Second,

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 81. Publication date: May 2023.

81:18 Feiyu Wang, Qizhi Chen, Yuanpeng Li, Tong Yang, Yaofeng Tu, Lian Yu, and Bin Cui

we demonstrate a few properties of JoinSketch itself through experiments, including stability and
throughput. Third, we show the performance of JoinSketch in finding frequent items and frequency
estimation. Finally, we analyze the influence of parameters and give recommended settings. We
show that JoinSketch has an advantage over existing algorithms when the data is skewed and the
memory is limited.

6.1 Experimental Setup

6.1.1 Datasets.

1) CAIDA dataset: CAIDA Anonymized Internet Trace [10] is a data stream of anonymized IP
trace collected in 2018. Each item is identified by its source IP (4 bytes) and destination IP (4 bytes).
2) TPC-DS dataset: The TPC Benchmark™ DS (TPC-DS) [41] is a decision support benchmark
that models several generally applicable aspects of a decision support system, including queries
and data maintenance. The benchmark provides a representative evaluation of the System Under
Test’s (SUT) performance as a general-purpose decision support system.

3) MovieLens dataset: The MovieLens datasets [27] are widely used in education, research, and
industry. These datasets are a product of member activity in the MovieLens movie recommendation
system, an active research platform that has hosted many experiments since its launch in 1997.
4) Zipf datasets: We generate synthetic datasets of Zipf distribution with different parameters and
every dataset contains 32,000,000 items in completely random order.

5) Zipf with shifting: Two Zipf datasets with the same distribution will have frequent items with
the same id. A shifting of k means that the i’ most frequent item in the original dataset is the
(i + k)%N*" most frequent item in the shifted dataset, where N is the number of distinct items. We
use a pair of Zipf dataset and shifted Zipf dataset to evaluate the impact of different correlations.
The larger the shifting is, the less correlated the datasets are.

6) Zipf with different data arrival orders: In the scenarios of traditional database systems, the
physical layout of data is often ordered, semi-ordered, or clustered, which leads to different data
arrival orders. We reshuffle the Zipf datasets to generate datasets of different data arrival orders.
We sort the items by their ID to generate ordered datasets. We swap every item with one of the 100
items closest to it based on the ordered datasets to generate clustered datasets. We swap every item
with one of the 1000 items closest to it based on the ordered datasets to generate semi-ordered
datasets.

6.1.2 Platform and implementation. We evaluate all algorithms on a server with 18-core CPUs (36
threads, Intel CPU i9-10980XE @3.00 GHz) with 128GB 3200MHz DDR4 memory and 24.75MB L3
cache. We implement all algorithms with C++ and build them with g++ 7.5.0 (Ubuntu 7.5.0-6ubuntu2)
and the -O3 option. The hash functions we use are 32-bit Murmur Hash [1].

6.1.3 Metrics.

1) Absolute Error (AE): % > ‘ -] ’, where J is the true value of inner-product, J is the estimated
value, and ¥ is the number of testing rounds.

2) Relative Error (RE): % > \] - j| /]

02
3) Variance (Var): % > (J=]) . We use variance to measure the stability of the algorithm.

4) Throughput (Mops): Million operations per second.

5) Maximum Absolute Error and Minimum Absolute Error: We use them to measure the
algorithm’s best- and worst-case errors.

6) Precision Rate (PR): %. We use the precision rate to evaluate the ability to find
frequent items.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 81. Publication date: May 2023.

JoinSketch: A Sketch Algorithm for Accurate and Unbiased Inner-Product Estimation 81:19

7) Average Relative Error (ARE): ﬁ De 5, €K |fes, — f;ﬁi |/ fes,» where fe, is the real frequency of
item eg,, f‘-’ﬁi is the estimated frequency of eg,, and K is the query set.

8) Average Absolute Error (AAE): ﬁ e 5 €K |fes, — ﬁ‘ﬁ,— |, where K, f.; and ﬁ‘ﬁi are the same as
those defined in ARE.

o & Ours - Count-Min & Ours - Count-Min Ours - Count-Min 10 Ours - Count-Min
10 F-AGMS —o- Skimmed 1011 F-AGMS —o- Skimmed . F-AGMS —o- Skimmed F-AGMS —o- Skimmed
10 5
100 10° 10
w w w w
10
< M o 6\9\9‘9\9—9\9\9_6 < S\S\e-SMH <
B 7
10 10 4
o M _N_W \’M\M 10 8@:5
10’ 10°
25 50 75 100 125 25 50 75 100 135 25 50 75 100 125 25 50 75 100 125
Memory Usage (KB) Memory Usage (KB) Memory Usage (KB) Memory Usage (KB)
(a) AE on CAIDA. (b) AE on Zipf (« = 0.8). (c) AE on TPC-DS. (d) AE on MovieLens.

Fig. 3. AE on various datasets.

~&~ Ours-80KB —p>— Ours-120KB
10' W Ours-40KB 25
o' 10° 20
& S ¢ 3
wo ¢ e W _|©-ouws % CountMin & 215
© 10 10" F-AGMS g Skimmed g
10° M 10
10 Ours —— Count-Min 107 W s
F-AGMS —©- Skimmed D
0.00 0.25 0.50 0.75 1.00 100 200 300 100 200 300 0 CAIDA TPC-DS Zipf(0.8)
Alpha Shifting Shifting Datasets
Fig. 4. Impact of dataset Fig. 5. Impact of dataset Fig. 6. Dataset correla- Fig. 7. Throughput.
skewness. correlation. tion v.s. memory usage.

6.1.4 Parameter setting.

We compare JoinSketch with the Fast-AGMS sketch [15] (F-AGMS for short), the Count-Min sketch
[16, 46], and the Skimmed sketch [23]. We set the number of hashes d = 3 by default, and all results
are averaged over 50 runs with different hash seeds. For the CAIDA dataset, we set the threshold T
to 400 for both JoinSketch and the Skimmed sketch. For the Zipf datasets, the threshold we set is
adjusted according to the distribution’s parameter a.

6.2 Experiments on Accuracy

Impact of memory size (Figure 3): We evaluate the accuracy of JoinSketch and its competitors.
The memory allocated to these algorithms ranges from 8KB to 128KB on each dataset. We find
that JoinSketch always achieves the best accuracy. The Count-Min sketch needs more memory
to work well, while in practice, we don’t always have that much memory. The accuracy of the
Fast-AGMS sketch and the Skimmed sketch is comparable. Because the separated frequent items
are not accurate, the performance of the Skimmed sketch is always inferior to JoinSketch, and
even sometimes inferior to the Fast-AGMS sketch. Compared to the Skimmed sketch, the error of
the frequent items found by JoinSketch is so small that JoinSketch achieves the best performance.
When the memory is large enough, the average absolute error of JoinSketch is up to 15X smaller
than that of the Fast-AGMS sketch. On average, JoinSketch is 10 times better than the Fast-AGMS
sketch.

In addition to the CAIDA and the generated Zipf datasets, we also conduct experiments on the
TPC-DS dataset and MovieLens dataset, which corresponds to the applications in database systems
and cosine similarity mentioned in Section 5.2 and Section 5.3. These two datasets are in the form

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 81. Publication date: May 2023.

81:20 Feiyu Wang, Qizhi Chen, Yuanpeng Li, Tong Yang, Yaofeng Tu, Lian Yu, and Bin Cui

> ordered] &~ random —— ordered
dered - clustered 10 semiordered {5~ clustered
10"
£
S 10"
10°
10" 10"
25 50 75 100 135 25 50 75 100 135
Memory Usage (KB) Memory Usage (KB)
(a) AE. (b) Variance.

Fig. 8. Impact of data arrival orders.

of key-value pairs, where key is the data item and the value is the frequency of the item. The
experimental results show that JoinSketch can still achieve good performance. The TPC-DS dataset
is a benchmark for database systems that has a bit of skewness. Therefore, JoinSketch still performs
well since the frequent items are separated from the infrequent items. We use the Movielens dataset
to evaluate the performance of JoinSketch on cosine similarity estimation as in [32]. The dataset
consists of movie ratings on a 5-star scale, with half-star increments. As shown in Figure 3(d), the
absolute error of JoinSketch is small. This dataset only has ratings from 0 to 5 in the vector, but
even for such a dataset with little skewness, JoinSketch still outperforms the Fast-AGMS sketch and
the Count-Min sketch. On these datasets, the Skimmed sketch has almost no optimization effect.
Impact of dataset skewness (Figure 4): To simulate data with different skewness, we conduct
experiments on the datasets of Zipf distribution with alpha ranging from 0.0 to 0.9. We fixed the
memory size of all algorithms to 80KB. We use RE instead of AE because the true value of the
inner-product changes as the alpha changes. We find that as the skewness of the dataset increases,
the RE of each algorithm decreases. This is because of the nature of the Zipf distribution. As alpha
increases, the number of distinct items in the data stream decreases, and the true value of the
inner-product increases considerably. Both of the above factors will lead to smaller RE. From Figure
4, we can clearly see that JoinSketch achieves the best accuracy. The higher the skewness of the
dataset is, the greater the advantage of JoinSketch is.

Impact of dataset correlations (Figure 5 and Figure 6): We generate two Zipf datasets with
a = 0.8 and shift one of them by different parameters between 0 and 300. The memory used by the
algorithms is fixed to 80KB and the accuracy is measured with RE. The experimental results show
that when the datasets are less correlated, the accuracy of all algorithms becomes lower, which
indicates that the inner-product estimation becomes more difficult. More shifting degrades the
accuracy of JoinSketch because when the intersection between the frequent items of two datasets
is small, the benefit of separating frequent items and infrequent items is small. JoinSketch, however,
always achieves the best accuracy among competitors. We also study the impact of memory usage
and data correlations together. Figure 6 shows that more memory usage improves the accuracy of
JoinSketch while the impact of dataset correlations remains the same.

Impact of data arrival orders: We study the impact of data arrival orders on JoinSketch because
the data arrival skew will affect the effectiveness of separating the frequent items for JoinSketch.
As shown in Figure 8, data arrival orders affect the performance of JoinSketch. The random dataset
is the worst case because many instances of frequent items may be evicted to the infrequent
part before they grow frequent. JoinSketch achieves the best accuracy on the ordered dataset
because when the dataset is ordered, JoinSketch can find frequent items efficiently. The accuracy
of JoinSketch on clustered and semi-ordered datasets is between the ordered and random ones,
which is consistent with how much ordered these datasets are. More ordered datasets lead to better
performance of JoinSketch.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 81. Publication date: May 2023.

JoinSketch: A Sketch Algorithm for Accurate and Unbiased Inner-Product Estimation 81:21

® Ows v Gounthin 10 S ows v Gownthin
10 F-AGMS —o- Skimmed 107 F-AGMS —o- Skimmed
. 10°' 108
21 © [
w s 10 w
g . o g o 10’
10 '017
10°
10"” 10° 10"
50 100 Ours F-AGMS Skimmed 25 50 75 100 125 10° Ours F-AGMS Skimmed
Memory Usage (KB) Algorithms Memory Usage (KB) Algorithms
(a) Variance on CAIDA. (b) Stability on CAIDA. (c) Variance on Zipf (« = 0.8) (d) Stability on Zipf (@ = 0.8)

Fig. 9. Experiments on stability.

1.0 10' o Ous v CountMin 1.0
10° F-AGMS
0.9 o 0.9
5 K 5
)~ o 3 o
<10 Qo7 <10 207
o o
2
. 06 10 06
10 05 & ours - Ours
25 50 75 100 125 ’ 25 50 75 100 125 25 50 75 100 125 25 50 75 100 125
Memory Usage (KB) Memory Usage (KB) Memory Usage (KB) Memory Usage (KB)
(a) ARE on CAIDA. (b) Precision on CAIDA. (c) ARE on Zipf (2=0.8). (d) Precision on Zipf (¢ =

0.8).
Fig. 10. Accuracy of finding frequent items.

6.3 Experiments on Stability

An important indicator to measure the quality of an algorithm is the variance because the algorithm
with less variance leads to more stability. We evaluate the variance of JoinSketch and its competitors
for 100 rounds on the CAIDA and Zipf datasets with fixed memory of 80KB. The results are shown
in Figure 9. From Figure 9(a) and Figure 9(c), we can see that JoinSketch has a clear advantage on
the variance. Besides the variance, Figure 9(b) and Figure 9(d) show that JoinSketch also performs
better than other algorithms in terms of max, min, and median. Benefiting from separating the
frequent items, the stability of JoinSketch for inner-product estimation are significantly better than
other algorithms.

6.4 Experiments on Throughput

We evaluate the throughput of each algorithm on different datasets. The operation of JoinSketch is
more complex, so it generally takes more time to insert an item than other algorithms. But with
SIMD optimization, JoinSketch can sometimes achieve better throughput. As shown in Figure 7,
we can see that JoinSketch, the Fast-AGMS sketch, and the Count-Min sketch have comparable
throughput. The Skimmed sketch is not a one-pass algorithm, so we don’t compare its throughput
with other algorithms.

6.5 Experiments on Finding Frequent Items

Finding frequent items is a fundamental problem in data stream processing. JoinSketch is not
specific to this problem, but can report frequent items approximately using the frequent part. We
conducted two experiments related to finding frequent items, and the two experiments can also
reflect the efficiency of our algorithm on separating the frequent items and the infrequent items.
First, we query the frequency of the 500 most frequent items in the CAIDA and Zipf (« = 0.8)
datasets. As shown in Figure 10(a) and Figure 10(c), the ARE of JoinSketch is the smallest, which
means that JoinSketch performs very well in the frequency estimation of the 500 most frequent

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 81. Publication date: May 2023.

81:22 Feiyu Wang, Qizhi Chen, Yuanpeng Li, Tong Yang, Yaofeng Tu, Lian Yu, and Bin Cui

items. We then evaluate how many items of the top 500 frequent items appear in the frequent part,
and Figure 10(b) and Figure 10(d) show that JoinSketch is very accurate in finding the frequent
items. In fact, when the memory is more than 30KB, the precision can reach more than 90%, which
means that most of the frequent items are successfully classified into the frequent part.

Ours —p— Count-Min
F-AGMS —&- Ours-biased

Ours —5— Count-Min
F-AGMS -5 Ours-biased

< <
< 10 <
~
° 10°

260 460 600 800 1000 200 400 600 800 1000
Memory Usage (KB) Memory Usage (KB)

(a) AAE on CAIDA. (b) AAE on Zipf (a = 0.8).

Fig. 11. Frequency estimation.

6.6 Experiments on Frequency Estimation

Figure 11 shows the experimental results of frequency estimation on CAIDA and Zipf (& = 0.8). The
line of Ours-biased represents the lookup operation which does not query an item in the infrequent
part if it exists in the frequent part or the medium part. JoinSketch outperforms the Count-Min
sketch and the Fast-AGMS sketch in terms of frequency estimation. The performance of JoinSketch
is nearly the same as JoinSketch-biased, which means that few instances of frequent items are
evicted to the infrequent part compared with the instances recorded in the frequent part and the
medium part.

6.7 Experiments on Parameters

Impact of Threshold T (Figure 12(a)): JoinSketch needs to set a threshold T. It affects which
items go into the frequent part. In fact, threshold T is strongly related to the skewness of the dataset.
Our goal is to filter out the frequent items in the dataset. On the one hand, if the threshold T is small,
some infrequent items will be considered as frequent items, which will downgrade the accuracy of
JoinSketch. On the other hand, if the threshold T is set too large, frequent items will be considered
infrequent and the counters in the medium part may overflow, which will also downgrade the
accuracy of JoinSketch. Figure 12(a) shows the results of JoinSketch on the CAIDA dataset with
threshold T ranging from 100 to 1000. The results are in line with the above discussion. When the
threshold is greater than 300, the difference is not big. This is because the error of items with a
frequency greater than 300 in the CAIDA dataset entering the frequent part is relatively small. The
reason that there is no overflow caused by a large threshold is that the size of the counter in the
medium part is set to 10 bits in our algorithm optimization. The threshold is less than 1024, and
there will be no overflow on the CAIDA dataset.

Impact of memory allocation (Figure 12(b)): The memory used by JoinSketch is divided into
three parts. The memory of the frequent part should be positively related to the number of frequent
items, so it actually depends on the threshold T. Assuming the memory of frequent part is set
according to the threshold T, we consider only the size ratio of the medium part and the infrequent
part. We evaluate the performance of JoinSketch with W ranging from % to % on the
CAIDA dataset. As shown in Figure 12(b), we can find that when the memory of the medium part
is small, the error is large because the size of the medium part affects the effectiveness of finding
the frequent items. When the infrequent part is too small, the error of the infrequent items due to

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 81. Publication date: May 2023.

JoinSketch: A Sketch Algorithm for Accurate and Unbiased Inner-Product Estimation 81:23

425k

3M 400k
w w 375k
350k

™ 325k

300k
200 460 600 800 1000 02 04 0
Threshold Ratio

6 0.8

(a) Effect of Threshold T. (b) Effect of memory alloca-
tion.

Fig. 12. Impact of different parameters of JoinSketch.

hash collisions can also lead to inaccurate estimation. Therefore, we should set a moderate memory
ratio of the medium part to the infrequent part.

7 RELATED WORK

This section first discusses related work for the inner-product estimation and the join size estimation
and then presents algorithms for finding frequent items and sketch algorithms designed for skewed
data streams.

7.1 Inner-product Estimation

There are three mainstream inner-product size estimation techniques in the literature: histograms,
sampling techniques, and sketches.

7.1.1 Histograms. Histograms[28-30, 42] are common column statistics that provide information
about the data distribution of column data in a database. It divides the domain of an attribute into
several buckets and assumes a uniform distribution within each bucket.

7.1.2 Sampling Techniques. Sampling techniques[26] are widely used in inner-product/join size
estimation. The cross-product sampling scheme[26] is believed to give the best estimation out of the
simple sampling schemes. However, sampling techniques are sensitive to skewed and sparse data,
while skewed data are common in real scenarios. To address this drawback, researchers propose
Bifocal[24] sampling algorithm and End-biased[21] sampling algorithm. Correlated sampling is
proposed in [55], which is a part of CS2 algorithm, and [52] improved correlated sampling.

7.1.3 Sketches. Sketches [12, 13, 16, 46] are especially appropriate for the scenarios of data streams.
There are several pieces of research focusing on inner-product estimation using sketches. The
basic AGMS sketch is first presented in [4, 5]. Dobra et al. [19, 20] extends AGMS to multi-way
join size estimation. The Fast-AGMS sketch [15] preserves a matrix of basic AGMS counters to
improve accuracy and efficiency simultaneously and achieves the best performance according to
[45, 46]. The Skimmed sketch[23] and the Red sketch [25] propose to estimate the inner-product
by estimating the inner-product of frequent items and infrequent items separately. The Skimmed
sketch first builds a Fast-AGMS sketch for a data stream. Then it goes through the domain of the
data stream to find frequent items. The Skimmed sketch and the Red sketch need to go through
the domain of the data stream before estimating the inner-product, which means these multi-pass
techniques are not practical. [50] extends the sketch-based method to join sketch estimation subject
to filters. [31] proposes an online query optimizer exclusively based on sketches in a real database
system and proposes to reorganize arrays of counters into a matrix to support multi-way join
using the Fast-AGMS sketch. [9] introduces bound sketches that provide theoretical upper bounds
for cardinality estimation.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 81. Publication date: May 2023.

81:24 Feiyu Wang, Qizhi Chen, Yuanpeng Li, Tong Yang, Yaofeng Tu, Lian Yu, and Bin Cui

7.2 Finding Frequent Items

There are many solutions in finding frequent items, including Misra-Gries algorithm [40], Lossy
counting [38], SpaceSaving [39], Unbiased SpaceSaving [49], e.t.c. [8]. They report high accuracy for
the frequent items but report 0 for the infrequent items and are thus not suitable for inner-product
estimation.

7.3 Separating Frequent and Infrequent Items

Real data often obeys unbalanced data distribution such as Zipf [3, 43]. There are a number of sketch
algorithms that record frequent and infrequent items separately in the literature, such as ASketch
[44], ColdFilter [60], ElasticSketch [54], and so on [7, 35-37, 53, 58, 59]. After adjustment to the
scenarios of inner-product, they can be applied to estimate inner-product of data streams. However,
the adjustment may require a lot of hard work because these algorithms are not particularly
designed for inner-product estimation. Most of them cannot provide an unbiased estimation.

8 CONCLUSION

This paper proposes an algorithm called JoinSketch for inner-product estimation. It can provide
accurate, fast, and unbiased inner-product estimation for data streams. By separating frequent
and infrequent items, JoinSketch improves the accuracy of inner-product estimation, especially
when the data is highly-skewed. We prove mathematically the unbiasedness of inner-product
estimation given by JoinSketch and that it has lower variance than the prior art, Fast-AGMS sketch.
We conduct extensive experiments on various real-world and synthetic datasets. Our experimental
results show that JoinSketch maintains unbiasedness, and the error is 10 times on average smaller
than the state-of-the-art on high-skewed datasets. JoinSketch outperforms the state-of-the-art with
respect to both accuracy and stability.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their valuable suggestions. This work is sup-
ported by Key-Area Research and Development Program of Guangdong Province 2020B0101390001,
ZTE Industry-University-Institute Cooperation Funds under Grant No. HC-CN-20220705007, and
National Natural Science Foundation of China (NSFC) (No. U20A20179 and No. 61872011).

REFERENCES

[1] 2016. Murmur Hashing source codes. https://github.com/aappleby/smhasher/blob/master/src/MurmurHash3.cpp.

[2] 2023. Related Source code. https://github.com/JoinSketch/JoinSketch.

[3] Lada A Adamic and Bernardo A Huberman. 2000. Power-law distribution of the world wide web. science 287, 5461
(2000), 2115-2115.

[4] Noga Alon, Phillip B Gibbons, Yossi Matias, and Mario Szegedy. 2002. Tracking join and self-join sizes in limited
storage. J. Comput. System Sci. 64, 3 (2002), 719-747.

[5] Noga Alon, Yossi Matias, and Mario Szegedy. 1999. The space complexity of approximating the frequency moments.
Journal of Computer and system sciences 58, 1 (1999), 137-147.

[6] K. Balachander, S. Subhabrata, Z. Yin, and C. Yan. 2003. Sketch-based change detection: methods, evaluation, and
applications. In Proceedings of the 3rd ACM SIGCOMM conference on Internet measurement. ACM, 234-247.

[7] Ran Ben Basat, Gil Einziger, Michael Mitzenmacher, and Shay Vargaftik. 2021. SALSA: self-adjusting lean streaming
analytics. In 2021 IEEE 37th International Conference on Data Engineering (ICDE). IEEE, 864-875.

[8] Ran Ben-Basat, Gil Einziger, Roy Friedman, and Yaron Kassner. 2016. Heavy hitters in streams and sliding windows. In
IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications. IEEE, 1-9.

[9] Walter Cai, Magdalena Balazinska, and Dan Suciu. 2019. Pessimistic cardinality estimation: Tighter upper bounds for
intermediate join cardinalities. In Proceedings of the 2019 International Conference on Management of Data. 18-35.

[10] CAIDA. 2018. The CAIDA UCSD Anonymized Internet Traces 2018. https://www.caida.org/catalog/datasets/passive_

dataset/.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 81. Publication date: May 2023.

https://github.com/aappleby/smhasher/blob/master/src/MurmurHash3.cpp
https://github.com/JoinSketch/JoinSketch
https://www.caida.org/catalog/datasets/passive_dataset/
https://www.caida.org/catalog/datasets/passive_dataset/

JoinSketch: A Sketch Algorithm for Accurate and Unbiased Inner-Product Estimation 81:25

[11]
[12]
[13]

[14]

[15]
[16]
[17]
[18]
[19]
[20]
[21]

[22

—

[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]

[31]

[32]
[33]

[34]

[35]

[36]

Moses Charikar, Kevin Chen, and Martin Farach-Colton. 2002. Finding frequent items in data streams. In Automata,
Languages and Programming. Springer.

Peiging Chen, Dong Chen, Lingxiao Zheng, Jizhou Li, and Tong Yang. 2021. Out of many we are one: Measuring item
batch with clock-sketch. In Proceedings of the 2021 International Conference on Management of Data. 261-273.
Peiqing Chen, Yuhan Wu, Tong Yang, Junchen Jiang, and Zaoxing Liu. 2021. Precise error estimation for sketch-based
flow measurement. In Proceedings of the 21st ACM Internet Measurement Conference. 113-121.

Shumo Chu, Magdalena Balazinska, and Dan Suciu. 2015. From theory to practice: Efficient join query evaluation in a
parallel database system. In Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data.
63-78.

Graham Cormode and Minos Garofalakis. 2005. Sketching streams through the net: Distributed approximate query
tracking. In Proceedings of the 31st international conference on Very large data bases. 13-24.

Graham Cormode, Minos Garofalakis, Peter] Haas, Chris Jermaine, et al. 2011. Synopses for massive data: Samples,
histograms, wavelets, sketches. Foundations and Trends® in Databases 4, 1-3 (2011), 1-294.

Graham Cormode and S Muthukrishnan. 2005. An improved data stream summary: the count-min sketch and its
applications. Journal of Algorithms 55, 1 (2005), 58-75.

Kyle Deeds, Dan Suciu, Magda Balazinska, and Walter Cai. 2022. Degree sequence bound for join cardinality estimation.
arXiv preprint arXiv:2201.04166 (2022).

Alin Dobra, Minos Garofalakis, Johannes Gehrke, and Rajeev Rastogi. 2002. Processing complex aggregate queries
over data streams. In Proceedings of the 2002 ACM SIGMOD international conference on Management of data. 61-72.
Alin Dobra, Minos Garofalakis, Johannes Gehrke, and Rajeev Rastogi. 2004. Sketch-based multi-query processing over
data streams. In International Conference on Extending Database Technology. Springer, 551-568.

Cristian Estan and Jeffrey F Naughton. 2006. End-biased samples for join cardinality estimation. In 22nd International
Conference on Data Engineering (ICDE’06). IEEE, 20-20.

Philippe Flajolet, Eric Fusy, Olivier Gandouet, and Frédéric Meunier. 2007. Hyperloglog: the analysis of a near-optimal
cardinality estimation algorithm. In Discrete Mathematics and Theoretical Computer Science. Discrete Mathematics and
Theoretical Computer Science, 137-156.

Sumit Ganguly, Minos Garofalakis, and Rajeev Rastogi. 2004. Processing data-stream join aggregates using skimmed
sketches. In International Conference on Extending Database Technology. Springer, 569-586.

Sumit Ganguly, Phillip B Gibbons, Yossi Matias, and Avi Silberschatz. 1996. Bifocal sampling for skew-resistant join
size estimation. In Proceedings of the 1996 ACM SIGMOD international conference on management of data. 271-281.
Sumit Ganguly, Deepanjan Kesh, and Chandan Saha. 2005. Practical algorithms for tracking database join sizes. In
International Conference on Foundations of Software Technology and Theoretical Computer Science. Springer, 297-309.
Peter] Haas, Jeffrey F Naughton, S Seshadri, and Arun N Swami. 1993. Fixed-precision estimation of join selectivity.
In Proceedings of the twelfth ACM SIGACT-SIGMOD-SIGART symposium on Principles of database systems. 190-201.

F. M. Harper and J. A. Konstan. 2015. The MovieLens Datasets. ACM Transactions on Interactive Intelligent Systems
(TiiS) (2015).

Yannis E Ioannidis and Stavros Christodoulakis. 1991. On the propagation of errors in the size of join results. In
Proceedings of the 1991 ACM SIGMOD International Conference on Management of data. 268-277.

Yannis E Ioannidis and Stavros Christodoulakis. 1993. Optimal histograms for limiting worst-case error propagation in
the size of join results. ACM Transactions on Database Systems (TODS) 18, 4 (1993), 709-748.

Yannis E Ioannidis and Viswanath Poosala. 1995. Balancing histogram optimality and practicality for query result size
estimation. Acm Sigmod Record 24, 2 (1995), 233-244.

Yesdaulet Izenov, Asoke Datta, Florin Rusu, and Jun Hyung Shin. 2021. COMPASS: Online Sketch-based Query
Optimization for In-Memory Databases. In Proceedings of the 2021 International Conference on Management of Data.
804-816.

Konstantin Kutzkov, Mohamed Ahmed, and Sofia Nikitaki. 2015. Weighted similarity estimation in data streams. In
Proceedings of the 24th ACM International on Conference on Information and Knowledge Management. 1051-1060.
Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and Thomas Neumann. 2015. How good
are query optimizers, really? Proceedings of the VLDB Endowment 9, 3 (2015), 204-215.

Viktor Leis, Bernhard Radke, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and Thomas Neumann.
2018. Query optimization through the looking glass, and what we found running the join order benchmark. The VLDB
Journal 27, 5 (2018), 643-668.

Haoyu Li, Qizhi Chen, Yixin Zhang, Tong Yang, and Bin Cui. 2022. Stingy sketch: a sketch framework for accurate and
fast frequency estimation. Proceedings of the VLDB Endowment 15, 7 (2022), 1426-1438.

Yuanpeng Li, Xiang Yu, Yilong Yang, Yang Zhou, Tong Yang, Zhuo Ma, and Shigang Chen. 2021. Pyramid Family:
Generic Frameworks for Accurate and Fast Flow Size Measurement. IEEE/ACM Transactions on Networking 30, 2 (2021),
586-600.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 81. Publication date: May 2023.

81:26 Feiyu Wang, Qizhi Chen, Yuanpeng Li, Tong Yang, Yaofeng Tu, Lian Yu, and Bin Cui

[37] Zaoxing Liu, Ran Ben-Basat, Gil Einziger, Yaron Kassner, Vladimir Braverman, Roy Friedman, and Vyas Sekar. 2019.
Nitrosketch: Robust and general sketch-based monitoring in software switches. In Proceedings of the ACM Special
Interest Group on Data Communication. 334-350.

[38] Gurmeet Singh Manku and Rajeev Motwani. 2002. Approximate frequency counts over data streams. In VLDB’02:
Proceedings of the 28th International Conference on Very Large Databases. Elsevier, 346-357.

[39] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. 2005. Efficient computation of frequent and top-k elements
in data streams. In International Conference on Database Theory. Springer.

[40] Jayadev Misra and David Gries. 1982. Finding repeated elements. Science of computer programming 2, 2 (1982), 143-152.

[41] Meikel Poess. 2018. TPC-DS. Springer International Publishing, Cham, 1-8. https://doi.org/10.1007/978-3-319-63962-
8 127-1

[42] Viswanath Poosala and Yannis E Ioannidis. 1997. Selectivity estimation without the attribute value independence
assumption. In VLDB, Vol. 97. Citeseer, 486-495.

[43] David MW Powers. 1998. Applications and explanations of Zipf’s law. In New methods in language processing and
computational natural language learning.

[44] Pratanu Roy, Arijit Khan, and Gustavo Alonso. 2016. Augmented sketch: Faster and more accurate stream processing.
In Proceedings of the 2016 International Conference on Management of Data. 1449-1463.

[45] Florin Rusu and Alin Dobra. 2007. Statistical analysis of sketch estimators. In Proceedings of the 2007 ACM SIGMOD
international conference on Management of data. 187-198.

[46] Florin Rusu and Alin Dobra. 2008. Sketches for size of join estimation. ACM Transactions on Database Systems (TODS)
33,3 (2008), 1-46.

[47] Robert Schweller, Zhichun Li, Yan Chen, et al. 2007. Reversible sketches: enabling monitoring and analysis over
high-speed data streams. IEEE/ACM Transactions on Networking (ToN) 15, 5 (2007), 1059-1072.

[48] Christian Timmerer and Anatoliy Zabrovskiy. 2019. Automating QoS and QoE Evaluation of HTTP Adaptive Streaming
Systems. ZTE Communications 17, 1 (2019), 18-24.

[49] Daniel Ting. 2018. Data sketches for disaggregated subset sum and frequent item estimation. In Proceedings of the 2018
International Conference on Management of Data. 1129-1140.

[50] David Vengerov, Andre Cavalheiro Menck, Mohamed Zait, and Sunil P Chakkappen. 2015. Join size estimation subject
to filter conditions. Proceedings of the VLDB Endowment 8, 12 (2015), 1530-1541.

[51] S. Venkataraman, D. Xiaodong Song, P. B. Gibbons, and A. Blum. 2005. New Streaming Algorithms for Fast Detection
of Superspreaders. In NDSS.

[52] TaiNing Wang and Chee-Yong Chan. 2020. Improved correlated sampling for join size estimation. In 2020 IEEE 36th

International Conference on Data Engineering (ICDE). IEEE, 325-336.

Kaicheng Yang, Yuanpeng Li, Zirui Liu, Tong Yang, Yu Zhou, Jintao He, Tong Zhao, Zhengyi Jia, Yongqiang Yang,

et al. 2021. SketchINT: Empowering INT with TowerSketch for Per-flow Per-switch Measurement. In 2021 IEEE 29th

International Conference on Network Protocols (ICNP). IEEE, 1-12.

Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi Gong, Yang Zhou, Rui Miao, Xiaoming Li, and Steve Uhlig. 2018.

Elastic sketch: Adaptive and fast network-wide measurements. In Proceedings of the 2018 Conference of the ACM Special

Interest Group on Data Communication. 561-575.

[55] Feng Yu, Wen-Chi Hou, Cheng Luo, Dunren Che, and Mengxia Zhu. 2013. CS2: a new database synopsis for query
estimation. In Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data. 469-480.

[56] Qixun ZHANG, Jing HAN, Li CHENG, Baisheng ZHANG, and Zican GONG. 2022. Approach to Anomaly Detection in

Microservice System with Multi-Source Data Streams. ZTE Communications 20, 3 (2022), 85-92.

Yinda Zhang, Jinyang Li, Yutian Lei, Tong Yang, Zhetao Li, Gong Zhang, and Bin Cui. 2020. On-off sketch: A fast and

accurate sketch on persistence. Proceedings of the VLDB Endowment 14, 2 (2020), 128-140.

[58] Bohan Zhao, Xiang Li, Boyu Tian, Zhiyu Mei, and Wenfei Wu. 2021. DHS: Adaptive Memory Layout Organization of
Sketch Slots for Fast and Accurate Data Stream Processing. In Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery & Data Mining. 2285-2293.

[59] Zheng Zhong, Shen Yan, Zikun Li, Decheng Tan, Tong Yang, and Bin Cui. 2021. BurstSketch: Finding bursts in data
streams. In Proceedings of the 2021 International Conference on Management of Data. 2375-2383.

[60] Yang Zhou, Tong Yang, Jie Jiang, Bin Cui, Minlan Yu, Xiaoming Li, and Steve Uhlig. 2018. Cold Filter: A Meta-Framework
for Faster and More Accurate Stream Processing. In SIGMOD Conference.

[53

[t

[54

—

[57

—

Received July 2022; revised October 2022; accepted November 2022

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 81. Publication date: May 2023.

https://doi.org/10.1007/978-3-319-63962-8_127-1
https://doi.org/10.1007/978-3-319-63962-8_127-1

	Abstract
	1 Introduction
	2 Background
	2.1 Problem Definition
	2.2 Sketch-Based Inner-product Estimation

	3 JoinSketch
	3.1 Rationale of JoinSketch
	3.2 Data Structure and Operations
	3.3 Inner-product Estimation
	3.4 Optimizations
	3.5 Extension to Multi-Way Joins

	4 Theoretical Analysis
	4.1 Unbiasedness of JoinSketch
	4.2 Variance of JoinSketch
	4.3 Effectiveness of Finding Frequent Items
	4.4 Analysis on Fingerprint

	5 Applications
	5.1 Applications in Data Stream Processing
	5.2 Applications in Database
	5.3 Applications in Cosine Similarity

	6 Experimental Results
	6.1 Experimental Setup
	6.2 Experiments on Accuracy
	6.3 Experiments on Stability
	6.4 Experiments on Throughput
	6.5 Experiments on Finding Frequent Items
	6.6 Experiments on Frequency Estimation
	6.7 Experiments on Parameters

	7 Related Work
	7.1 Inner-product Estimation
	7.2 Finding Frequent Items
	7.3 Separating Frequent and Infrequent Items

	8 Conclusion
	Acknowledgments
	References

