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1 INTRODUCTION

Data stream processing is very important in a variety of areas in data science, such as intrusion
detection [16, 29], recommendation systems [19, 34], etc. [5, 12, 15]. Data streams are usually highly
skewed [14, 31, 45], i.e., a few items are very popular (called frequent items), while the vast majority
of items are unpopular (called infrequent items). The research community so far has paid more
attention to the frequent items in the data stream. Many important measurement tasks focus on
frequent items, including finding top-k items [17, 28], finding heavy changes [22, 24], finding
super-spreaders [23, 35], etc. [6, 7, 26, 43]. In these tasks, the numerous infrequent items consume
too much memory, which degrades the accuracy. Sketch, as a kind of compact data structure with
small error, is promising in data stream processing [9, 11, 14, 31, 45]. Its speed is constant: each
insertion needs several hash computations and memory accesses. To satisfy the tasks favoring
frequent items, a widely-acknowledged approach is to filter infrequent items [21, 45].

Ideally, one would want to filter all infrequent items without error. However, initially, every item
is infrequent, and could become frequent after a long enough period of time. The large volume and
high item arrival rate of data streams make it impractical to keep the frequency of all items without
error, with limited memory and time. Therefore, our goal is to approximately filter infrequent items
while satisfying the following two requirements.

e Memory efficiency: A method consists in keeping approximate frequency of all items. However,
this method is still memory inefficient because of the numerous infrequent items. In this paper,
we manage to discard infrequent items with small error.

o Time Efficiency: Achieving time efficiency is possible through two types of methods. 1) We can
reduce the number of hash computations and memory accesses. These are the two bottlenecks
for the processing speed [25, 40]. 2) To further accelerate the processing, we can leverage the full
use of the new features of CPU instructions or rely on hardware acceleration.

The most directly related works in filtering infrequent items are ColdFilter [45] and LogLogFilter
[21]. ColdFilter [45] uses a 2-layer CU sketch ! [14] to record the frequency of each item, and sets a
threshold to separate frequent items from infrequent items. When inserting an item, ColdFilter
first inserts it into the CU sketch and queries its frequency. The items whose queried frequency
exceeds a pre-defined threshold will be reported as frequent items. To enlarge the filter range of
ColdFilter, LogLogFilter [21] replaces the CU sketch with a LogLog structure [13].

ColdFilter keeps the frequency of all infrequent items, which comes with unnecessary memory
overhead. ColdFilter also requires multiple hash computations and memory accesses (e.g., 6 or
more), resulting in considerable time overhead. LogLogFilter inherits the previously mentioned
limitations of ColdFilter. To the best of our knowledge, no existing solution simultaneously meets
the above two requirements.

To accurately filter infrequent items with small memory and time overhead, we design a new
probabilistic algorithm, LadderFilter. The key technique of LadderFilter is to discard “unpromising”
items in time, based on our observation about which items are not likely to become popular. We
also propose a SIMD-based method to optimize LadderFilter.

To better illustrate our observation, we first define active, inactive, promising, and unpromising
items. If an item does not appear in the recent time window, we call it an inactive item; otherwise,
we call it an active item. When an active item becomes inactive, 1) if its frequency is small (e.g., < 5),
we call it an unpromising item; 2) if its frequency is moderate (e.g., 5 ~ 30), we call it a promising
item. Note that we judge whether an item is promising/unpromising according to its frequency

1A CU sketch is a classic counter-based sketch (see more details in § 3.1).
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only when it becomes inactive. 2 We study a number of real datasets, and observe that an item that
is unpromising for a long time rarely becomes frequent afterwards. Figure 1 shows the results on
IP trace dataset (see § 4.1) [2]. Less than 6% of the unpromising items become frequent items. In
detail, we consider an inactive item with frequency less than 5 as an unpromising item. When the
threshold of frequent item is 256, there are about 10.1k frequent items. When the sliding window
size is 10k items, there are about 200k items that are unpromising till the end of the stream. Among
them, only 262 (0.1%) unpromising items grow into frequent items. When the sliding window size
exceeds 100k, the number decreases to 0.
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Fig. 1. Ratio of unpromising items becoming frequent. Different lines represent different thresholds of
frequent items.
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Fig. 2. LadderFilter workflow.

Based on the above observation, we design LadderFilter, whose key technique is to discard the
unpromising items in LadderFilter as early as possible. The data structure of LadderFilter is similar to
a ladder consisting of multiple LRU queues * (see Figure 2). For queue i, it is associated with a low
threshold Tl.l"w and a common high threshold T"9". When an item is dequeued, if its frequency
exceeds T"9" we consider it as a frequent item; if its frequency is lower than Tl.low, we consider it
as an unpromising item; otherwise, we consider it as a promising item. Frequent items are sent
to a dedicated sketch designed to record frequent items; unpromising items are simply discarded,;

2Example: Suppose that item e arrives 30 times continuously, and then stops for a relatively long time, which means it
becomes inactive. Because 30 is moderate, we recognize e as a promising item.
3The reason for using the LRU policy rather than LFU is that LFU is time-agnostic (see more details in § 2.1).
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promising items are inserted to the next queue. In this way, we give the promising items another
chance to become frequent items. If the item grows fast in the next queue and exceeds T"9", it
will become a frequent item; if it grows too slowly (less than T'%"), it will be considered as an
unpromising item and discarded; otherwise, it is still a promising item and will enter queue i + 2.

To achieve time efficiency, we propose an optimized version of LadderFilter, using two methods.
The first method is to approximate LRU queues with bucket arrays. Each LRU queue is replaced by
an LRU bucket array associated with a hash function, which maps each item to one bucket (see
§ 2.2). The second method is SIMD Acceleration. We leverage SIMD instructions in two ways. First,
we accelerate the ID match, similarly to previous work [31, 39]. Second, we use SIMD instructions to
sort the items. Through only two SIMD instructions, we keep items in time order, and we implement
the LRU policy without recording any timestamp. To the best of our knowledge, we are the first
work to sort items in the context of sketching algorithms.

We apply LadderFilter to four kinds of widely used sketches: the CU sketch [14], SpaceSaving
[28], FlowRadar [24], and WavingSketch [23]. Our experimental results show that LadderFilter
improves the accuracy by up to 60.6%, and the throughput by up to 1.37x. Also, LadderFilter can
maintain high accuracy even with extremely limited memory, while the accuracy of prior works
degrades significantly as memory shrinks. All related code is open-sourced at Github [4].

Key Contributions:

e We propose a basic version of LadderFilter to discard infrequent items with small memory
overhead, based on the observation that unpromising items rarely grow into frequent items.

e We propose an optimized version to accelerate LadderFilter. We leverage SIMD instructions to
implement the LRU policy.

e We implement LadderFilter and apply it to four kinds of frequently used sketches on four typical
data stream tasks. The experimental results show that LadderFilter improves the accuracy and
throughput by up to 60.6x and 1.37x, respectively, and can maintain high accuracy even with
limited memory.

2 LADDERFILTER

In this section, we present the data structure and operation of LadderFilter. We first present the
basic version of LadderFilter which achieves memory efficiency. We then present an optimized
version of LadderFilter to enhance its time efficiency. After that, we present a SIMD-based method
to accelerate LadderFilter.

2.1 Basic Version

Data structure: As shown in Figure 3, LadderFilter consists of A LRU queues. The i*" queue Q;
consists of [; cells. Each cell records a distinct item with three fields: ID, freq, and timestamp,
representing the ID, frequency, and the last arrival timestamp of the item, respectively. Each queue
is associated with a low threshold T/°* and a common high threshold T"%". All high thresholds
are equal, and the low thresholds are increasing, i.e., Tll‘”" < TZI‘”" <--- < T/{‘i‘f < T/{"W = Thigh,
Insertion: As shown in Algorithm 1, there are two cases when inserting an item e.

Case 1: If e has already been recorded in one of the queues, LadderFilter increments its frequency
by 1, and updates its last arrival timestamp to the current timestamp. If its frequency exceeds the
high threshold T"9", LadderFilter reports it as a frequent item.

Case 2:If e is not recorded in LadderFilter, we enqueue it to the first LRU queue Q;. If Q; is not full,
LadderFilter enqueues e to Q; with frequency 1 and the current timestamp. Otherwise, LadderFilter
dequeues the least recent item ey gy from @y, and enqueues e to Q. If the frequency of ey gy exceeds
the low threshold Til"w, we consider ey gy as a promising item, and enqueue it to the next queue Q.
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Fig. 3. An example of the basic version of LadderFilter.

The enqueueing process is the same as for Q;, except that the last queue Q) will discard the least
recent item instead of trying to enqueue it to another queue.

Algorithm 1: Insertion of LadderFilter.
Input: Item e
1 Function Enqueue(Q;, e, freq, timestamp):

2 if Q; is full then

3 erru < the least recent item in Q;

4 if i < A and Q;[erry].freq > Tl.l"w then
5 L Enqueue(Qi41, eLru, QileLru].freq, timestamp)
6 dequeue item ey gy from Q;

7 enqueue item < e, freq, timestamp > to Q;
.-

9 forie [1,k] do
10 if e € Q; then

11 Q;ile].freq < Q;[e].freq+1

12 Q;i[e].timestamp « current_timestamp
13 if Qi[e].freq > T"9" then

14 L report e as a frequent item

15 return

16 Enqueue(Q, e, 1, current_timestamp)

Example 1: Figure 3 shows an example of the basic version of LadderFilter. The LadderFilter
consists of 4 LRU queues Q1, Q2, @3, and Q4. Q; is associated with a low threshold Tll"w =8, Q,
is associated with a low threshold TZIOW = 20, and Qs is associated with a low threshold T;"W. All
queues are associated with a high threshold T"9". Suppose we insert e, at time t;. We find that e; is
not recorded in LadderFilter, and we enqueue it to the first queue Q;. Q; is full, so we dequeue the
least recent item e; from @, and record < eg, 1, t7 > in the cell. Then we compare the frequency of
es and Q;’s low threshold Tll"w. The frequency 8 exceeds the threshold 8. Therefore, we enqueue e;
to Q; with frequency 8 and timestamp t;. Q, is also full, so we dequeue the least recent item e,
and record < es, 8,t; > in the cell. e;’s frequency 16 does not exceed Tzl"w, so we discard e;.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 10. Publication date: May 2023.
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Discussions on replacement policies: We choose to use the LRU policy. By using the LRU policy,
we can distinguish between active and inactive items. By recording frequency, we can further
distinguish between promising and unpromising items, and discard the unpromising items. We do
not use the LFU policy, because LFU is time-agnostic, and thus we cannot distinguish promising
items and unpromising items without time information. Another possible policy is LRFU. LRFU
takes into account both arrival time and frequency. However, LRFU requires more parameters and
different optimization strategies. We leave LRFU for future work.

2.2 Optimized Version

Rationale: There are mainly two methods to implement LRU queues.

e Memory-oriented method: Using no additional data structure. When looking for an item, we
scan the whole queue. However, the time complexity is O(queue len).

e Time-oriented method: Using a hash table to locate the incoming items and a bidirectional
linked list to maintain the arrival order of items. However, this consumes a lot of extra memory.

In summary, the above two methods are either time consuming or memory consuming. In contrast,
our design goal is to implement LRU queues in a method that optimizes both memory and time.
Our methodology is to achieve this design goal by approximately implementing LRU. Fortunately,
accurate LRU and approximate LRU has little performance difference for LadderFilter. Therefore,
we choose to implement LRU queues in an approximate manner and propose an optimized version
of LadderFilter.

Data structure: The LRU queue Q; is replaced by an LRU bucket array with w; buckets. Let Q;[ ]
denote the j** bucket. Each bucket contains ¢ cells (w; X ¢ = [;), where c is usually small (e.g., 8). Q;
is also associated with a hash function h;(.)(0 < h;(.) < w;), which maps each item to one of the
buckets.

Operations: Each bucket obeys LRU policy independently. When enqueueing an item e to Q;,
LadderFilter first computes hash function h;(e) to locate one LRU bucket Q;[h;(e)]. Then Lad-
derFilter enqueues e to the bucket in a process similar to the basic version. If the bucket is full,
LadderFilter dequeues the least recent item from the bucket. The dequeueing operation works as
follows: LadderFilter scans the bucket, finds the least recent item, and dequeues it. To sum up, both
the enqueueing and dequeueing operations are applied to only one hashed LRU bucket instead of
the whole queue in the basic version.

Example 2: Figure 4 shows an example of the optimized version of LadderFilter. The LadderFilter
consists of 2 LRU queues Q; and Q. Q; consists of 10 LRU buckets, and @, consists of 2 LRU
buckets. When inserting e, at time 5, we first calculate the two hash functions h;(e;) = 1 and
hy(ez) = 1 to locate the corresponding bucket in each queue. We find that e; has already been
recorded in @;. Therefore, we increment its frequency by 1 to 11, and update its timestamp to .
Then we compare the frequency of e, and the high threshold T"9". The frequency exceeds the
threshold, and LadderFilter reports e; as a frequent item.

Example 3: When inserting e at time t;, we first calculate the two hash functions h;(es) = 10
and hy(ez) = 2 to locate the corresponding bucket in each queue. We find that e is not recorded in
any corresponding bucket. Therefore, we enqueue e to bucket 10 in Q;. We find that the bucket is
full. Therefore, we dequeue the least recent item es, and record < e, 1, 7 > in the cell. Then we
compare the frequency of e; and Q;’s low threshold Tll"w. The frequency exceeds the threshold,
and we enqueue it to @Q; with frequency 8 and timestamp #;. We find that bucket 2 in Q; is also full.
Therefore, we dequeue the least recent item eq, and record < es, 8, #; > in the cell. Note that Q, is
the last queue in LadderFilter, therefore, e; is discarded.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 10. Publication date: May 2023.
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Fig. 4. An example of the optimized version.

Next, we show that the optimized version is similar to the basic version in terms of dequeueing
items.

THEOREM 1. In both versions, the expectation of the dequeueing interval * of an item e is the same.

PROOF. Let E?#¢ and E°P! be the expectation of the dequeueing interval. Let w be the number
of buckets, and ¢ be the number of cells in each bucket in the optimized version. The number of
cells in the LRU queue in the basic version is w - ¢. Suppose distinct items arriving at a constant

rate v. In the basic version, the expectation of the dequeueing interval
phasic _ w-c
v

In the optimized version, according to the randomness of the hash computation, an item is
inserted to every bucket with equal probability, i.e., =. Therefore, the expectation of the time that a
distinct item inserted to a specific bucket b

w
E°P' {1 distinct item inserted} = —.
v

The expectation of the dequeueing interval

w-e ;
E°Pt = ¢ . E°Pt {1 distinct item inserted} = —— = EP%c,
v

Analyses on worst cases: There are mainly two worst cases in the optimized version.

e Hash collision: All items are hashed to the same bucket. This will lead to low accuracy as many
frequent items are discarded since they are classified as unpromising. If this occurs, error is large,
and we can address this by replacing the hash function.

o Hash starving: Some buckets have no item hashed into. This means the bucket array has a low
loading rate, and it is memory wasting.

4The interval between the last arrival time of an item and the time it is dequeued from the bucket/queue.
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Next, we derive the probability that the worst cases occur. Suppose there are w buckets. Con-
sidering the randomness/uniformity of hashing, for an arbitrary bucket Q[i], the probability that
an arbitrary item e is located to Q[i] is %v Suppose the number of distinct items is N. Let N; be
the number of distinct items located to Q[i]. The expectation of N; is E(N;) = % The variance
D(N;) = W Therefore, for each arbitrary €, by Chebyshev inequality,

< N(w - 1)/w2.

P{IN; — E(N)| > ¢} ~

Hash collision means N; > E(Nj;). Suppose a is a constant that satisfies 1 < a < w. Therefore,

P{N; > —} < P{|N; - E(Ny)| >

}

8|z
8|z
2|z

a(w-1) N a?
S N(w-a)?2 Nw’

Hash starving means 0 & N; < E(N;). Suppose b is a constant that satisfies 1 < b < E(N;) = %
Therefore,
N
P{0 < N; < b} < P{IN; = E(N))| > — — b}
w

Nw-1) w

S (N-bw)2 N’
Note that, N and w are large in data stream and deployment, and w is usually several orders of
magnitude smaller than N (see § 4). Therefore, the probability of the two worst cases occurring is

very low.

Optimization - using fingerprints. As many existing works [38, 42], LadderFilter also supports
using fingerprints to replace the IDs when the length of item ID is long (e.g., 104 bits in TCP packet
streams). Although using fingerprints may result in hash collision of two distinct items, it can
significantly reduce the memory usage. In other words, it can achieve higher accuracy with the same
memory. Next, we show the probability of hash collision, and the expectation of overestimation.

LEmMMA 2. In the optimized version, the probability of an item e suffering from hash collisions
n
Pr {hash collision} = 1 — (1 - 2_1) ,

where [ is the length of the fingerprint, and n is the number of distinct items inserted to the bucket
when e is in the bucket.

LEMMA 3. The expectation of the overestimation of an item e caused by hash collisions

E {overestimation} = n - 2.

Table 1. The expectation of overestimation caused by hash collisions.

Probability n =10 n =100 n = 1000
=8 3.906 X 1072 | 3.906 x 10~! | 3.906 x 10°
=16 1.526 X 107* | 1.526 X 1073 | 1.526 x 1072
=32 2.328 X 1077 | 2.328 x 1078 | 2.328 x 1077
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The expectation of the overestimation caused by hash collisions is shown in Table 1. For an
infrequent item, n < 79" . ¢. Suppose 79" = 100 and ¢ = 8. n < 800. E {overestimation} <
1.526 X 1072, We recommend using 16-bit fingerprints.

2.3 SIMD Acceleration

The optimized version meets our requirement in terms of memory and time efficiency. However,
it still requires storing and comparing timestamps, which still incurs a large memory and time
overhead. Motivated by this, we propose to accelerate the insertion of LRU buckets with SIMD
instructions. For each bucket, we maintain the ID and frequency of each item, while removing the
last arrival timestamp. To locate the LRU item, we keep the items in time order. Unlike the basic
version, when inserting an item e to bucket Q;[h;(e)], after inserting/updating a cell, we further
sort the items in the bucket according to time. Suppose e is the j** item in the bucket. We move the
(j+1)*" items to the j*" cell, the (j +2)*" items to the (j +1)%" cell, ..., the ¢** items to the (¢ — 1)*"
cell, and e /the j** item to the c” cell. The 1%, ..., (j — 1)*" items remain in their original cells.

Algorithm 2: SIMD acceleration.
Input: The sequence of the arriving item i
1 uint16_t id[8], freq[8];
2 __ml28iindex[4] = _mm_setr_epi8(8,9,0,1,2,3,4,5,6,7,10,11, 12,13, 14, 15);
3 __ml28i*p_id = (__m128ix)&id,;
4 p_id[0] = _mm_shuf fle_epi8(p_id[0], index|i]);

This version seems to require a lot of operations and thus be slow. However, it is ideal for SIMD
acceleration. For a better demonstration, we show the detailed implementation under the following
parameter settings: each bucket consists of 8 cells, and each cell consists of a 16-bit ID/fingerprint
and a 16-bit frequency. Algorithm 2 shows the C++ code for the sorting of IDs. The operation
on frequencies is the same as IDs. For lookup and update operations, please refer to [31, 44, 45].
The idea is to use function _mm_shuffle_epi8 to rearrange each byte in IDs into proper order. To
ensure memory continuity, we record IDs and frequencies in two arrays separately (see Line 1). We
pre-set the order of each byte in rearrangement operations. Line 2 gives a example of the pre-set
order when the arriving item is the 4% item in the bucket. Line 3 transposes the ID array into
a _m128i pointer. The compiler will load all IDs into a 128-bit SIMD register. Line 4 uses SIMD
instruction _mm_shuffle_epi8 to rearrange bytes in the register in proper sequence. The IDs
will then be stored to the proper cells (1 CPU cycle [3]). In summary, we sort the items within 2
SIMD instructions (1 for IDs, and 1 for frequencies), i.e., 2 CPU cycles. We can also implement the
operation over larger scale with _mm256_shuffle_epi8 and _mm512_shuffle_epi8. The sort can
be done within 2 SIMD instructions but requires more swap operations on integers.

Time complexity: Using multiple LRU buckets can accelerate the operations without additional
data structures. Each bucket contains much fewer items than the whole queue, hence we scan much
fewer items during each operation. The optimized version reduces the time complexity from O(queue
len) to O(bucket size). Most importantly, we use SIMD instructions to optimize enqueue/dequeue.
SIMD instructions can quickly rearrange cells in time order with only 2 instructions, i.e., 2 CPU
cycles.

Discussions on filter algorithm: The reviewer proposes to enqueue the promising item again
with an updated priority (i.e., mark it as recently used) to the same queue. The idea is novel and
interesting but is incompatible with our SIMD acceleration. We will study it in the future work.
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3 LADDERFILTER DEPLOYMENT

In this section, we describe how to deploy LadderFilter on four important tasks in data stream
processing: estimating item frequency, finding top-k items, finding heavy changes, and finding
super-spreaders. For each task, we first present the problem definition. Then we introduce popular
prior solutions for the task. Finally, we describe how to apply LadderFilter to these solutions.

3.1 Estimating Item Frequency

Problem definition: Given a data stream, reporting the frequency of every item ID.

Prior solutions: The CU sketch [14] is an extension of the well-known CM sketch [11] for
estimating item frequency. A CU sketch consists of d counter arrays, and each array is associated
with a hash function. When inserting item e, the CU sketch first computes the d hash functions to
locate the d mapped counters in each counter array. Then, the CU sketch increments the minimum
mapped counters by one, which is called the conservative update strategy. When querying the
frequency of item e, the CU sketch computes the d hash functions and locates the d mapped
counters. Then, the CU sketch reports the minimum value among the mapped counters as the
frequency of item e.

Applying LadderFilter: We build a LadderFilter to cooperate with the CU sketch. LadderFilter
will be used to prevent infrequent items from being inserted into the CU sketch, since we consider
the accuracy of frequent items to be more important.

Insertion: When inserting item e, we first insert e into LadderFilter as mentioned in § 2.2. If
LadderFilter reports e as a frequent item, we further insert e into the CU sketch. The insertion
frequency depends on whether e is reported for the first time. If e is reported as a frequent item
for the first time, we insert it with frequency (Thigh) to the CU sketch; otherwise, we insert e with
frequency (one) to the CU sketch.

Query: There are two steps for a query. 1) We first query CU for the frequency of item e. If
its frequency is not 0, it must exceed the high threshold Thigh Therefore, we consider it as a
frequent item and report the frequency from CU. 2) Otherwise, e is an infrequent item. We then
check whether e is in LadderFilter. If it is recorded in LadderFilter, we report the frequency from
LadderFilter; otherwise, we report its frequency as 0.

3.2 Finding Top-k Items

Problem definition: Given a data stream and k, reporting the k items with the highest frequency.
Prior work: SpaceSaving [28] is the most well-known solution for finding top-k items. SpaceSaving
uses a data structure called Stream-Summary to maintain frequent items. Stream-Summary achieves
updating and querying in linear time, while maintaining the order of the items. When inserting
item e, if e is already recorded in Stream-Summary, or it is not full, SpaceSaving inserts e into
Stream-Summary. Otherwise, SpaceSaving replaces the item with the minimum frequency in
Stream-Summary with item e, and increments its frequency by 1. When querying top-k items,
SpaceSaving reports the k items with the highest frequency in Stream-Summary.

Applying LadderFilter: We build a LadderFilter to cooperate with SpaceSaving. LadderFilter will
be used to prevent infrequent items from being inserted into SpaceSaving. We do this because
all top-k items must be frequent items, therefore, inserting infrequent items to SpaceSaving will
degrade accuracy.

Insertion: When inserting item e, we first check whether e is already recorded in SpaceSaving.
If so, we insert it into SpaceSaving. Otherwise, we insert item e into LadderFilter. If LadderFilter
reports item e as a frequent item, we further insert it into SpaceSaving. Note that similarly to
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estimating item frequency, we update SpaceSaving with frequency depending on whether item e is
reported as a frequent item for the first time.
Query: When querying top-k frequent items, we report the k items reported by SpaceSaving.

3.3 Finding Heavy Changes

Problem definition: Given a data stream, reporting all items that experience a frequency change
exceeding a threshold 75 between two consecutive time windows.

Prior work: FlowRadar [24] is a promising solution for finding heavy changes. To find heavy
changes, one FlowRadar is built for each time window. The FlowRadar consists of a Bloom filter
[8] and a counting table. The bloom filter is used to identify whether an inserting item is a new
distinct item. The counting table is an extended Invertible Bloom Lookup Table (IBLT) [18] used
to encode item IDs and their frequency. When inserting item e, FlowRadar first checks the bloom
filter to identify whether item e is a new item. If so, FlowRadar increments its frequency; otherwise,
FlowRadar further encodes the ID. When querying heavy changes, FlowRadar first decodes its
counting table to get an < item, frequency > set. Then, FlowRadar compares the two sets in the
two consecutive time windows, and reports the heavy changes.

Applying LadderFilter: We build a LadderFilter to cooperate with FlowRadar. LadderFilter will be
used to prevent infrequent items from being inserted into the Flowradar. The reason behind it is as
follows: if an item is a heavy change, it must be a frequent item in at least one of the time window.
Because LadderFilter can automatically discard unpromising items, we build a single LadderFilter
and use it to filter infrequent items in all time windows.

Insertion: Similar to finding top-k items, when inserting an item, we first check the Bloom filter
to find whether the item is already recorded in FlowRadar. If so, we insert the item to it. Otherwise,
we insert the item into LadderFilter. If LadderFilter reports the item as a frequent item, we further
insert it into FlowRadar.

Query: When querying the heavy changes, we first decode the two corresponding FlowRadar for
two consecutive time windows, and get two < item, frequency > sets S; and S,. Then we insert the
infrequent items recorded by LadderFilter into S,. We consider the items in the two sets as potential
heavy changes. After getting the two sets, we calculate the frequency difference between the two
sets. Note that if an item is not recorded in one set, we consider its frequency in the corresponding
time window as zero. We report all items whose frequency difference exceeds 7.

3.4 Finding Super-Spreaders

Problem definition: Given a data stream with < src, dst > (source, destination) pair, report all
sources whose number of destinations connected exceeds a threshold 7.

Prior work: WavingSketch [23] is a recent solution for finding top-k items, and can be extended
to find super-spreaders. WavingSketch is made of multiple buckets. Each bucket consists of a
Waving counter and a Heavy part. The Heavy part contains several cells, recording ID, frequency,
and error flags. During an insertion, if the item is recorded in the Heavy Part with no error, or
the Heavy Part is not full, WavingSketch inserts it to the Heavy Part; otherwise, WavingSketch
additionally updates the Waving Counter with an equal probability of +1/-1. To find super-
spreaders, WavingSketch cooperates with a Bloom filter (BF) [8] to remove duplicates. Given an
item < src, dst >, WavingSketch first checks the Bloom filter, to find whether the item is a duplicate.
If not, WavingSketch insert < src, dst > to the Bloom filter, and insert src to the sketch.
Applying LadderFilter: We build a LadderFilter between the Bloom filter and WavingSketch.
LadderFilter will be used to prevent infrequent items from being inserted into the WavingSketch
after removing duplicates.
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Insertion: When inserting an item < src,dst >, we first check the Bloom filter, to find out
whether the item is a duplicate. We discard the duplicate. We then check whether src is already
recorded in the Heavy Part of WavingSketch. If so, we insert the item to it. Otherwise, we insert
src into LadderFilter. If LadderFilter reports the item as a frequent item, we further insert it into
WavingSketch.

Query: When querying super-spreaders, we report the frequent items reported by WavingSketch.

4 EXPERIMENTAL RESULTS
4.1 Experimental Setup

Computation platform: We conduct all experiments on a CPU server (Intel i9-10980XE). The
CPU has three levels of caches: 64KB L1 cache and 1MB L2 cache for each core, and 24.75MB L3
cache shared by all cores. We set the CPU frequency to 4.2GHZ and the memory frequency to
3200MHZ.

Implementation: We implement LadderFilter (Ours), ColdFilter (CF) [45], and LogLogFilter (LLF)
[21] in C++, and apply them to the CU sketch [14], SpaceSaving (SS) [28], FlowRadar (FR) [24], and
WavingSketch (WS) [23].

Datasets: The datasets used for the evaluation are listed below.

o [P trace dataset: The IP trace dataset is an anonymized IP trace streams collected from [2]. We
use srcIP as the item ID in the former three tasks. The dataset contains 27M items, with 250k
distinct items. We use a 10X longer dataset for finding super-spreader, and use < srcIP, dstIP >
as the item ID.

e WebDocs dataset: The WebDocs dataset is a transactional dataset built from a collection of web
documents [1]. The dataset contains 32M items, with 950k distinct items.

o Synthetic datasets: The two synthetic datasets are generated following the Zipf distribution [30].
The skewness of the two datasets are 0.5 and 1.0, respectively. Each dataset contains 32M items,
with 1.0M distinct items.

Metrics: Metrics used for evaluation are listed below.

o Average Absolute Error (AAE): ﬁ fil Ifi — f,| where N is the number of distinct items, f; and ﬁ
are the actual and estimated frequency of the items respectively.

e F1 Score: %, where PR (Precision Rate) is the ratio of the number of the correct items reported
to the number of all items reported, and RR (Recall Rate) is the ratio of the number of the correct
items reported to the number of all correct items.

o Throughput: The number of operations per second, in million operation per second (Mops).

4.2 Parameter Settings

In this section, we first propose the parameter adjusting method. Then, we show experiments on
some important parameters.

4.2.1 Parameter Adjusting Method.

Methodology: When LadderFilter is cooperating with a sketch, there are two sources of error: 1) the
under-estimation error caused by LadderFilter’s discarding some unpromising items; 2) the inherent
error caused by the sketch, which could be under-estimation, over-estimation, or bidirectional. The
parameters can affect both of them at the same time. Our parameter setting methodology is to balance
the under-estimation error and the inherent error. Take T"9" as an example. If Thigh is too large, it
will lead LadderFilter to discard too many items, and thus result in large under-estimation error. If
T is too small, too many items will be inserted into the sketch, resulting in large inherent error.
Therefore, our method for adjusting the parameters is to 1) analyze the nature of the two sources
of error, and 2) find a variable V that can reflect the overall error and minimize it.
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LadderFilter+CU: LadderFilter only leads to under-estimation error, while CU only leads to
over-estimation error. Therefore, the variable V that we choose to reflect the overall error is the
difference between the total under-estimation and the total over-estimation of all items. When
adjusting the parameters, for each round, we build a LadderFilter+CU. After each round of insertion,
we calculate the total under-estimation and the total over-estimation of all items, respectively. If the
under-estimation and the over-estimation are almost equal, we consider that we have obtained an
optimal parameter. If the under-estimation is smaller/larger than the over-estimation, we adjust the
threshold to a larger/smaller value, respectively, and then proceed to the next round of parameter
adjustment.

LadderFilter+SS: Similar to CU, SS only leads to over-estimation error. The parameter adjustment
process of LadderFilter+SS is similar to that of LadderFilter+CU, except that we only calculate the
under-/over-estimation of the items in SS.

LadderFilter+FR: FR can be considered as a zero-error hash table when its loading rate (number
of distinct item ° : number of buckets) is lower than a theoretical maximum value of around 80%
[24]. When its loading rate exceeds the theoretical maximum value, it can hardly be decoded, and
thus all the items inserted into it become error. Therefore, the only error is the under-estimation
error caused by LadderFilter when the loading rate of FR is lower than the theoretical maximum
value. We find that the fewer items are filtered, the smaller the under-estimation error caused by
LadderFilter, meanwhile the higher the loading rate of FR. Therefore, the variable V that we choose
to reflect the overall error is the loading rate of FR. To minimize the error, the loading rate of FR
should be as higher as possible while lower than the theoretical maximum value. Therefore, when
adjusting the parameters, for each round, we compute the loading rate. If the loading rate is too
small/large, we adjust the threshold to a smaller/larger value, respectively.

LadderFilter+WS: We still choose the difference between the total under-estimation and the total
over-estimation of all items. Unlike CU and SS, WS leads to bidirectional error. According to our
many experimental tests, we observe that when the under-estimation is slightly larger than the
over-estimation, the accuracy reaches the optimal value.

4.2.2 Experiments on Parameter Settings.

Impact of queue number and size (Figure 5(a)-(b)): We find that when using multiple queues to
find top-k items, the accuracy is insensitive to different parameter settings. As shown in Figure 5(b),
under the near-optimal threshold (50 in the figure, the best observed value of T"9" in our experi-
ment), both single queue and multiple queues achieve high accuracy; while under other thresholds
(> 150 in the figure), the accuracy of using multiple queues, however, is significantly higher than
that of using a single queue. As shown in Figure 5(a), when estimating item frequency, the trend is
opposite. We find that when using 2 queues and setting Mg, : Mq, to 99 : 1, LadderFilter achieves
near optimal accuracy. Therefore, we recommend using these parameters. Note that using 3 or
more queues may help to find frequent items in other datasets and scenarios, and we remain this
design.

Impact of # cells per bucket (Figure 5(c)): We find that when # cells per bucket exceeds 8, the
accuracy stops increasing. The F1-score of 8 cells per bucket is on average 1.35% lower than more
cells per bucket. Therefore, we recommend setting # cells per bucket to 8 to balance the accuracy
and ease of deployment.

>The number of distinct items can be estimated quickly by linear counting [36].
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Fig. 5. Experimental results on parameter settings.

4.3 Experiments on Estimating Item Frequency

In this section, we compare LadderFilter+CU with CU, CF+CU, and LLF+CU. For Ours+CU, we
set the memory of filter and sketch Mo,,s : Mcy = 1 : 9. We set parameters of the compared
algorithms to the recommended values referred to their respective papers.

Accuracy (Figure 6): We find that LadderFilter reduces the error of CU by up to 28.8 times. As
shown in Figure 6, the AAE of LadderFilter is on average 7.43, 15.2, and 7.29 times lower than that
of CU, CU+CF, and CU+LLF, respectively. Note that LadderFilter achieves high accuracy under
limited memory. For example, when the memory is 100KB, the AAE of LadderFilter is on average
7.08, 5.95, 93.0, and 49.5 times lower than the compared algorithms on each datasets, respectively.
The reason is that LadderFilter approximately discards infrequent items from the filter, while CF
and LLF keep all infrequent items. Therefore, LadderFilter consumes less memory, and can use it
more efficiently.

Throughput (Figure 7): We find that LadderFilter achieves higher throughput compared to CF °
and LLF. As shown in Figure 7, the throughput of LadderFilter is 1.17 and 1.09 times higher than
that of CU+CF and CU+LLF, respectively.

Discussions on different datasets: The accuracy of LadderFilter varies among different datasets.
There are mainly two reasons. First, the skewness varies among different datasets. The accuracy
of LadderFilter is related to the accuracy of the dedicated data structure it cooperated with, and
the accuracy of the dedicated data structures is usually highly correlated with the skewness of the
data stream [10, 31, 40]. Therefore, LadderFilter has different accuracy on datasets with different
skewness. This feature is more evident in synthetic datasets (see Figure 6(c)-(d) & 8(c)-(d)). Second,
the arrival pattern of items varies among different datasets. For example, in synthetic datasets,
items arrive in random order. In the IP trace dataset, items arrive in the pattern of burst [43].
Therefore, the time it takes an infrequent item to become a frequent item varies among datasets.
Our experiments have demonstrated that LadderFilter can work well for different skewnesses and
arrival patterns.

%The results do not include aggregate-and-report, because this optimization is orthogonal to the filter, and can be applied to
any compared algorithm.
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4.4 Experiments on Finding Top-k Items

10:15

In this section, we compare LadderFilter+SS with SS, CF+SS, and LLF+SS. We set k to 1000. For
filter+SS, we set the number of items in SS to 1.5 X k. For the original SS, we additionally record

Mfilter
100B

items for comparison fairness ’.

Accuracy (Figure 8): We find that LadderFilter improves the accuracy of SS by up to 17.2 times.
As shown in Figure 8, the F1 Score of LadderFilter is on average 0.330, 0.130, and 0.310 higher
than the one of SS, SS+CF, and SS+LLF, respectively. Note that LadderFilter achieves high accuracy

"Existing works show that the memory usage of each item in SS is around 100B [21, 45].
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even with very little memory. With only 30KB, 20KB, 350KB, and 30KB of memory, the F1 Score of
LadderFilter exceeds 0.9 on each dataset, respectively.
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Fig. 8. Accuracy on Finding top-k items.

Throughput (Figure 7): We find that LadderFilter improves the throughput of SS. As shown in
Figure 7, the throughput of LadderFilter is 1.29, 1.67, and 2.73 times higher than the one of SS,
SS+CF, and SS+LLF, respectively.

4.5 Experiments on Finding Heavy Changes

In this section, we compare LadderFilter+FR with FR, CF+FR, and LLF+FR. We set the threshold of
heavy changes 75 to 0.01% of total item number. For filter+FR, we allocate 1IMB memory for FR.
Accuracy (Figure 9): We find that LadderFilter with limited memory can filter the infrequent
items inserted into FR, so that FR can be decoded successfully. As shown in Figure 9, with only
20KB of memory, the F1 Score of LadderFilter exceeds 0.9 on both datasets. The required memory
of filter is on average 4.0 and 14.5 times lower than that of CF and LLF, respectively. Note that to
successfully decode, FR requires more than 2.7MB and 9.6MB of memory, respectively; FR+LLF
requires more than 400KB of filter memory on the Web page dataset.

Throughput (Figure 7): We find that LadderFilter improves the throughput of FR. As shown in
Figure 7, the insertion throughput of LadderFilter is 1.37, 1.61, and 1.78 times higher than the one
of FR, FR+CF, and FR+LLF, respectively.
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Fig. 9. Accuracy on finding heavy changes.

4.6 Experiments on Finding Super-Spreaders

In this section, we compare LadderFilter+WS with WS, CF+WS, LLF+WS. We set the threshold
of super-spreaders 7 to the number of destinations connected to the 1500*" super-spreader. To
remove duplicates, we allocate 5MB for BF. For Ours+WS, we set the memory of filter and sketch
Mouyrs : Mws =3 :7.

Accuracy (Figure 10): We find that LadderFilter improves the accuracy of WS by up to 2.42 times.
As shown in Figure 10, the F1 Score of LadderFilter is on average 0.191, 0.291, and 0.341 higher
than the one of WS, CF+WS, and LLF+WS, respectively. The AAE of LadderFilter is on average
1.55, 3.41, and 30.4 times lower than the one of WS, CF+WS, and LLF+WS, respectively.
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Fig. 10. Accuracy on finding super-spreaders.

Throughput (Figure 7): We find that LadderFilter achieves a comparable throughput with WS, and
higher throughput compared with CF and LLF. As shown in Figure 7, the throughput of LadderFilter
is 1.26 and 1.23 times higher than the one of CF+WS and LLF+WS, respectively.

5 RELATED WORK

In this section, we first introduce existing solutions for filtering infrequent items. Then we introduce
existing solutions for four typical tasks in data stream processing.
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5.1 Filtering Infrequent Items

In skewed data streams, filtering infrequent items is an important strategy to improve the accuracy
of tasks favoring frequent items. The most relevant works to LadderFilter are ColdFilter (CF) [45]
and LogLogFilter (LLF) [21]. ColdFilter uses an additional sketch to filter infrequent items, and only
inserts frequent items to the dedicated sketch. ColdFilter relies on a 2-layer CU sketch [14] with
different-sized counters. The counter size of the first layer is small (e.g., 4 bits), and the counter size
of the second layer is large (e.g., 16 bits). For every incoming item, ColdFilter first inserts it to the
first layer. If all mapped counters in the first layer overflow, ColdFilter then inserts it to the second
layer. ColdFilter is also associated with a threshold for identifying frequent items. If the frequency
of an item exceeds the threshold, ColdFilter reports the item as a frequent item. By filtering the
infrequent items, ColdFilter improves the accuracy of frequent items. However, ColdFilter falls
short in terms of memory efficiency as it records the approximate frequency of all items. Further, it
requires multiple hash computations and memory accesses, and thus is less time efficient.

LogLogFilter [21] replaces the CU sketch in ColdFilter by a LogLog structure [13], so as to enlarge
the filter range. LogLogFilter is a register array associated with multiple hash functions and a
random generator. For every incoming item, LogLogFilter first computes hash functions to locate
the corresponding registers, and decides whether the item is an infrequent item. If so, LogLogFilter
generates random numbers that follow a geometric distribution and updates the corresponding
registers. LogLogFilter inherits the advantages and limitation of ColdFilter, and thus also falls short
in terms of both memory and time efficiency.

On top of the previous two works, many sketches record frequent and infrequent items separately.
Typical sketches include ASketch [31], HeavyGuardian [38], ElasticSketch [39], NitroSketch [25],
SeqSketch [20], etc. [37, 40, 42, 43].

5.2 Data Stream Processing Tasks

Estimating item frequency: Classic solutions in estimating item frequency include the CM
(Count-Min) sketch [11], the CU (Conservative Update) sketch [14], and the Count sketch [9]. A
CM sketch consists of multiple counter arrays and hash functions for mapping items to counters in
counter arrays. The CM sketch increments the mapped counters by 1 during insertion, and reports
the minimum value of the mapped counters during query. The CU sketch applies a conservative
update strategy to the CM sketch, and thus improves the accuracy. The Count sketch also consists
of multiple counter arrays and hash functions. It updates each counter with an equal probability of
+1/-1, and thus achieves unbiased estimation.

Finding top-k items: Typical solutions in finding top-k items include SpaceSaving [28], Unbiased
SpaceSaving [33], etc. [17, 23, 27, 38]. SpaceSaving maintains top-k items and their frequency
using a data structure called Stream-Summary, and guarantees no underestimated error. Unbiased
SpaceSaving applies a probabilistic replacement strategy to SpaceSaving for unbiased estimation.
Finding heavy changes: A kind of solution in finding heavy changes is to record all items in each
time window, and then compare the two consecutive time windows and report heavy changes.
Typical solutions include FlowRadar [24], k-ary [22], and the reversible sketch [32].

Finding super-spreaders: A kind of solution in finding super-spreaders is to combine an existing
sketch with a bitmap/Bloom filter to remove duplicates. Typical solutions include OpenSketch [41]
and WavingSketch [23].

6 CONCLUSION

In this paper, we proposed LadderFilter, which filters infrequent items with limited memory and
time overhead. To achieve memory efficiency, LadderFilter relies on multiple LRU queues to discard
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unpromising items, instead of keeping all frequent and infrequent items. To achieve time efficiency,
we leverage SIMD instructions to implement a LRU policy. LadderFilter can be applied to various
sketches, and can significantly improve their accuracy and throughput. All related code is provided
open-source at Github [4].
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