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Data stream processing is critical in streaming databases. Existing works pay a lot of attention to frequent

items. To improve the accuracy for frequent items, existing solutions focus on accurately filtering infrequent

items. While these solutions are effective, they keep track of all infrequent items and require multiple hash

computations and memory accesses. This increases memory and time overhead. To reduce this overhead, we

propose LadderFilter, which can discard infrequent items efficiently in terms of both memory and time. To

achieve memory efficiency, LadderFilter discards (approximately) infrequent items using multiple LRU queues.

To achieve time efficiency, we leverage SIMD instructions to implement LRU policy without timestamps. We

apply LadderFilter to four types of sketches. Our experimental results show that LadderFilter improves the

accuracy by up to 60.6×, and the throughput by up to 1.37×, and can maintain high accuracy with small

memory usage. All related code is provided open-source at Github.
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1 INTRODUCTION
Data stream processing is very important in a variety of areas in data science, such as intrusion

detection [16, 29], recommendation systems [19, 34], etc. [5, 12, 15]. Data streams are usually highly

skewed [14, 31, 45], i.e., a few items are very popular (called frequent items), while the vast majority

of items are unpopular (called infrequent items). The research community so far has paid more

attention to the frequent items in the data stream. Many important measurement tasks focus on

frequent items, including finding top-𝑘 items [17, 28], finding heavy changes [22, 24], finding

super-spreaders [23, 35], etc. [6, 7, 26, 43]. In these tasks, the numerous infrequent items consume

too much memory, which degrades the accuracy. Sketch, as a kind of compact data structure with

small error, is promising in data stream processing [9, 11, 14, 31, 45]. Its speed is constant: each

insertion needs several hash computations and memory accesses. To satisfy the tasks favoring

frequent items, a widely-acknowledged approach is to filter infrequent items [21, 45].

Ideally, one would want to filter all infrequent items without error. However, initially, every item

is infrequent, and could become frequent after a long enough period of time. The large volume and

high item arrival rate of data streams make it impractical to keep the frequency of all items without

error, with limited memory and time. Therefore, our goal is to approximately filter infrequent items

while satisfying the following two requirements.

• Memory efficiency: A method consists in keeping approximate frequency of all items. However,

this method is still memory inefficient because of the numerous infrequent items. In this paper,

we manage to discard infrequent items with small error.

• Time Efficiency: Achieving time efficiency is possible through two types of methods. 1) We can

reduce the number of hash computations and memory accesses. These are the two bottlenecks

for the processing speed [25, 40]. 2) To further accelerate the processing, we can leverage the full

use of the new features of CPU instructions or rely on hardware acceleration.

The most directly related works in filtering infrequent items are ColdFilter [45] and LogLogFilter

[21]. ColdFilter [45] uses a 2-layer CU sketch
1
[14] to record the frequency of each item, and sets a

threshold to separate frequent items from infrequent items. When inserting an item, ColdFilter

first inserts it into the CU sketch and queries its frequency. The items whose queried frequency

exceeds a pre-defined threshold will be reported as frequent items. To enlarge the filter range of

ColdFilter, LogLogFilter [21] replaces the CU sketch with a LogLog structure [13].

ColdFilter keeps the frequency of all infrequent items, which comes with unnecessary memory

overhead. ColdFilter also requires multiple hash computations and memory accesses (e.g., 6 or

more), resulting in considerable time overhead. LogLogFilter inherits the previously mentioned

limitations of ColdFilter. To the best of our knowledge, no existing solution simultaneously meets

the above two requirements.

To accurately filter infrequent items with small memory and time overhead, we design a new

probabilistic algorithm, LadderFilter. The key technique of LadderFilter is to discard “unpromising”

items in time, based on our observation about which items are not likely to become popular. We

also propose a SIMD-based method to optimize LadderFilter.

To better illustrate our observation, we first define active, inactive, promising, and unpromising

items. If an item does not appear in the recent time window, we call it an inactive item; otherwise,

we call it an active item. When an active item becomes inactive, 1) if its frequency is small (e.g., < 5),

we call it an unpromising item; 2) if its frequency is moderate (e.g., 5 ∼ 30), we call it a promising
item. Note that we judge whether an item is promising/unpromising according to its frequency

1
A CU sketch is a classic counter-based sketch (see more details in § 3.1).
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only when it becomes inactive.
2
We study a number of real datasets, and observe that an item that

is unpromising for a long time rarely becomes frequent afterwards. Figure 1 shows the results on

IP trace dataset (see § 4.1) [2]. Less than 6% of the unpromising items become frequent items. In

detail, we consider an inactive item with frequency less than 5 as an unpromising item. When the

threshold of frequent item is 256, there are about 10.1k frequent items. When the sliding window

size is 10k items, there are about 200k items that are unpromising till the end of the stream. Among

them, only 262 (0.1%) unpromising items grow into frequent items. When the sliding window size

exceeds 100k, the number decreases to 0.
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Fig. 1. Ratio of unpromising items becoming frequent. Different lines represent different thresholds of
frequent items.
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Fig. 2. LadderFilter workflow.

Based on the above observation, we design LadderFilter, whose key technique is to discard the
unpromising items in LadderFilter as early as possible. The data structure of LadderFilter is similar to

a ladder consisting of multiple LRU queues
3
(see Figure 2). For queue 𝑖 , it is associated with a low

threshold 𝑇 𝑙𝑜𝑤
𝑖

and a common high threshold 𝑇ℎ𝑖𝑔ℎ
. When an item is dequeued, if its frequency

exceeds 𝑇ℎ𝑖𝑔ℎ
, we consider it as a frequent item; if its frequency is lower than 𝑇 𝑙𝑜𝑤

𝑖
, we consider it

as an unpromising item; otherwise, we consider it as a promising item. Frequent items are sent

to a dedicated sketch designed to record frequent items; unpromising items are simply discarded;

2Example: Suppose that item 𝑒 arrives 30 times continuously, and then stops for a relatively long time, which means it

becomes inactive. Because 30 is moderate, we recognize 𝑒 as a promising item.

3
The reason for using the LRU policy rather than LFU is that LFU is time-agnostic (see more details in § 2.1).
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promising items are inserted to the next queue. In this way, we give the promising items another

chance to become frequent items. If the item grows fast in the next queue and exceeds 𝑇ℎ𝑖𝑔ℎ
, it

will become a frequent item; if it grows too slowly (less than 𝑇 𝑙𝑜𝑤
𝑖+1 ), it will be considered as an

unpromising item and discarded; otherwise, it is still a promising item and will enter queue 𝑖 + 2.
To achieve time efficiency, we propose an optimized version of LadderFilter, using two methods.

The first method is to approximate LRU queues with bucket arrays. Each LRU queue is replaced by

an LRU bucket array associated with a hash function, which maps each item to one bucket (see

§ 2.2). The second method is SIMD Acceleration. We leverage SIMD instructions in two ways. First,

we accelerate the ID match, similarly to previous work [31, 39]. Second, we use SIMD instructions to

sort the items. Through only two SIMD instructions, we keep items in time order, and we implement

the LRU policy without recording any timestamp. To the best of our knowledge, we are the first
work to sort items in the context of sketching algorithms.

We apply LadderFilter to four kinds of widely used sketches: the CU sketch [14], SpaceSaving

[28], FlowRadar [24], and WavingSketch [23]. Our experimental results show that LadderFilter

improves the accuracy by up to 60.6×, and the throughput by up to 1.37×. Also, LadderFilter can
maintain high accuracy even with extremely limited memory, while the accuracy of prior works

degrades significantly as memory shrinks. All related code is open-sourced at Github [4].

Key Contributions:
• We propose a basic version of LadderFilter to discard infrequent items with small memory

overhead, based on the observation that unpromising items rarely grow into frequent items.

• We propose an optimized version to accelerate LadderFilter. We leverage SIMD instructions to

implement the LRU policy.

• We implement LadderFilter and apply it to four kinds of frequently used sketches on four typical

data stream tasks. The experimental results show that LadderFilter improves the accuracy and

throughput by up to 60.6× and 1.37×, respectively, and can maintain high accuracy even with

limited memory.

2 LADDER FILTER
In this section, we present the data structure and operation of LadderFilter. We first present the

basic version of LadderFilter which achieves memory efficiency. We then present an optimized

version of LadderFilter to enhance its time efficiency. After that, we present a SIMD-based method

to accelerate LadderFilter.

2.1 Basic Version
Data structure: As shown in Figure 3, LadderFilter consists of 𝜆 LRU queues. The 𝑖𝑡ℎ queue Q𝑖
consists of 𝑙𝑖 cells. Each cell records a distinct item with three fields: 𝐼𝐷 , 𝑓 𝑟𝑒𝑞, and 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 ,

representing the ID, frequency, and the last arrival timestamp of the item, respectively. Each queue

is associated with a low threshold 𝑇 𝑙𝑜𝑤
𝑖

and a common high threshold 𝑇ℎ𝑖𝑔ℎ
. All high thresholds

are equal, and the low thresholds are increasing, i.e., 𝑇 𝑙𝑜𝑤
1

< 𝑇 𝑙𝑜𝑤
2

< · · · < 𝑇 𝑙𝑜𝑤
𝜆−1 < 𝑇 𝑙𝑜𝑤

𝜆
= 𝑇ℎ𝑖𝑔ℎ

.

Insertion: As shown in Algorithm 1, there are two cases when inserting an item 𝑒 .

Case 1: If 𝑒 has already been recorded in one of the queues, LadderFilter increments its frequency

by 1, and updates its last arrival timestamp to the current timestamp. If its frequency exceeds the

high threshold 𝑇ℎ𝑖𝑔ℎ
, LadderFilter reports it as a frequent item.

Case 2: If 𝑒 is not recorded in LadderFilter, we enqueue it to the first LRU queue Q1. If Q1 is not full,

LadderFilter enqueues 𝑒 to Q1 with frequency 1 and the current timestamp. Otherwise, LadderFilter

dequeues the least recent item 𝑒𝐿𝑅𝑈 from Q1, and enqueues 𝑒 to Q1. If the frequency of 𝑒𝐿𝑅𝑈 exceeds

the low threshold𝑇 𝑙𝑜𝑤
𝑖

, we consider 𝑒𝐿𝑅𝑈 as a promising item, and enqueue it to the next queue Q2.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 10. Publication date: May 2023.



LadderFilter: Filtering Infrequent Items with Small Memory and Time Overhead 10:5

<e3,8,t2> 𝒬𝒬1

≥ T1^low = 8
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…

… …𝒬𝒬4

𝒬𝒬3
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<e4,75,t4><e1,16,t1>

Fig. 3. An example of the basic version of LadderFilter.

The enqueueing process is the same as for Q1, except that the last queue Q𝜆 will discard the least

recent item instead of trying to enqueue it to another queue.

Algorithm 1: Insertion of LadderFilter.

Input: Item 𝑒

1 Function Enqueue(Q𝑖 , 𝑒 , 𝑓 𝑟𝑒𝑞, 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝):
2 if 𝑄𝑖 is full then
3 𝑒𝐿𝑅𝑈 ← the least recent item in Q𝑖
4 if 𝑖 < 𝜆 and Q𝑖 [𝑒𝐿𝑅𝑈 ] .𝑓 𝑟𝑒𝑞 ⩾ 𝑇 𝑙𝑜𝑤

𝑖
then

5 Enqueue(Q𝑖+1, 𝑒𝐿𝑅𝑈 , Q𝑖 [𝑒𝐿𝑅𝑈 ] .𝑓 𝑟𝑒𝑞, 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝)

6 dequeue item 𝑒𝐿𝑅𝑈 from Q𝑖
7 enqueue item < 𝑒, 𝑓 𝑟𝑒𝑞, 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 > to Q𝑖
8

9 for 𝑖 ∈ [1, 𝑘] do
10 if 𝑒 ∈ Q𝑖 then
11 Q𝑖 [𝑒] .𝑓 𝑟𝑒𝑞 ← Q𝑖 [𝑒] .𝑓 𝑟𝑒𝑞 + 1
12 Q𝑖 [𝑒] .𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝

13 if Q𝑖 [𝑒] .𝑓 𝑟𝑒𝑞 ⩾ 𝑇ℎ𝑖𝑔ℎ then
14 report 𝑒 as a frequent item

15 return

16 Enqueue(Q1, 𝑒 , 1, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝)

Example 1: Figure 3 shows an example of the basic version of LadderFilter. The LadderFilter

consists of 4 LRU queues Q1, Q2, Q3, and Q4. Q1 is associated with a low threshold 𝑇 𝑙𝑜𝑤
1

= 8, Q2

is associated with a low threshold 𝑇 𝑙𝑜𝑤
2

= 20, and Q3 is associated with a low threshold 𝑇 𝑙𝑜𝑤
3

. All

queues are associated with a high threshold𝑇ℎ𝑖𝑔ℎ
. Suppose we insert 𝑒6 at time 𝑡7. We find that 𝑒6 is

not recorded in LadderFilter, and we enqueue it to the first queue Q1. Q1 is full, so we dequeue the

least recent item 𝑒3 from Q1, and record < 𝑒6, 1, 𝑡7 > in the cell. Then we compare the frequency of

𝑒3 and Q1’s low threshold𝑇 𝑙𝑜𝑤
1

. The frequency 8 exceeds the threshold 8. Therefore, we enqueue 𝑒3
to Q2 with frequency 8 and timestamp 𝑡7. Q2 is also full, so we dequeue the least recent item 𝑒1,

and record < 𝑒3, 8, 𝑡7 > in the cell. 𝑒1’s frequency 16 does not exceed 𝑇 𝑙𝑜𝑤
2

, so we discard 𝑒1.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 10. Publication date: May 2023.
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Discussions on replacement policies:We choose to use the LRU policy. By using the LRU policy,

we can distinguish between active and inactive items. By recording frequency, we can further

distinguish between promising and unpromising items, and discard the unpromising items. We do

not use the LFU policy, because LFU is time-agnostic, and thus we cannot distinguish promising

items and unpromising items without time information. Another possible policy is LRFU. LRFU

takes into account both arrival time and frequency. However, LRFU requires more parameters and

different optimization strategies. We leave LRFU for future work.

2.2 Optimized Version
Rationale: There are mainly two methods to implement LRU queues.

• Memory-oriented method: Using no additional data structure. When looking for an item, we

scan the whole queue. However, the time complexity is O(queue len).

• Time-oriented method: Using a hash table to locate the incoming items and a bidirectional

linked list to maintain the arrival order of items. However, this consumes a lot of extra memory.

In summary, the above two methods are either time consuming or memory consuming. In contrast,

our design goal is to implement LRU queues in a method that optimizes both memory and time.

Our methodology is to achieve this design goal by approximately implementing LRU. Fortunately,

accurate LRU and approximate LRU has little performance difference for LadderFilter. Therefore,

we choose to implement LRU queues in an approximate manner and propose an optimized version

of LadderFilter.

Data structure: The LRU queue Q𝑖 is replaced by an LRU bucket array with𝑤𝑖 buckets. Let Q𝑖 [ 𝑗]
denote the 𝑗𝑡ℎ bucket. Each bucket contains 𝑐 cells (𝑤𝑖 × 𝑐 = 𝑙𝑖 ), where 𝑐 is usually small (e.g., 8). Q𝑖
is also associated with a hash function ℎ𝑖 (.) (0 ⩽ ℎ𝑖 (.) < 𝑤𝑖 ), which maps each item to one of the

buckets.

Operations: Each bucket obeys LRU policy independently. When enqueueing an item 𝑒 to Q𝑖 ,
LadderFilter first computes hash function ℎ𝑖 (𝑒) to locate one LRU bucket Q𝑖 [ℎ𝑖 (𝑒)]. Then Lad-

derFilter enqueues 𝑒 to the bucket in a process similar to the basic version. If the bucket is full,

LadderFilter dequeues the least recent item from the bucket. The dequeueing operation works as

follows: LadderFilter scans the bucket, finds the least recent item, and dequeues it. To sum up, both

the enqueueing and dequeueing operations are applied to only one hashed LRU bucket instead of

the whole queue in the basic version.

Example 2: Figure 4 shows an example of the optimized version of LadderFilter. The LadderFilter

consists of 2 LRU queues Q1 and Q2. Q1 consists of 10 LRU buckets, and Q2 consists of 2 LRU

buckets. When inserting 𝑒2 at time 𝑡6, we first calculate the two hash functions ℎ1 (𝑒2) = 1 and

ℎ2 (𝑒2) = 1 to locate the corresponding bucket in each queue. We find that 𝑒2 has already been

recorded in Q1. Therefore, we increment its frequency by 1 to 11, and update its timestamp to 𝑡6.

Then we compare the frequency of 𝑒2 and the high threshold 𝑇ℎ𝑖𝑔ℎ
. The frequency exceeds the

threshold, and LadderFilter reports 𝑒2 as a frequent item.

Example 3: When inserting 𝑒6 at time 𝑡7, we first calculate the two hash functions ℎ1 (𝑒6) = 10

and ℎ2 (𝑒2) = 2 to locate the corresponding bucket in each queue. We find that 𝑒6 is not recorded in

any corresponding bucket. Therefore, we enqueue 𝑒6 to bucket 10 in Q1. We find that the bucket is

full. Therefore, we dequeue the least recent item 𝑒3, and record < 𝑒6, 1, 𝑡7 > in the cell. Then we

compare the frequency of 𝑒3 and Q1’s low threshold 𝑇 𝑙𝑜𝑤
1

. The frequency exceeds the threshold,

and we enqueue it to Q2 with frequency 8 and timestamp 𝑡7. We find that bucket 2 in Q2 is also full.

Therefore, we dequeue the least recent item 𝑒1, and record < 𝑒3, 8, 𝑡7 > in the cell. Note that Q2 is

the last queue in LadderFilter, therefore, 𝑒1 is discarded.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 10. Publication date: May 2023.
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Fig. 4. An example of the optimized version.

Next, we show that the optimized version is similar to the basic version in terms of dequeueing

items.

Theorem 1. In both versions, the expectation of the dequeueing interval 4 of an item 𝑒 is the same.

Proof. Let 𝐸𝑏𝑎𝑠𝑖𝑐 and 𝐸𝑜𝑝𝑡 be the expectation of the dequeueing interval. Let𝑤 be the number

of buckets, and 𝑐 be the number of cells in each bucket in the optimized version. The number of

cells in the LRU queue in the basic version is𝑤 · 𝑐 . Suppose distinct items arriving at a constant

rate 𝑣 . In the basic version, the expectation of the dequeueing interval

𝐸𝑏𝑎𝑠𝑖𝑐 =
𝑤 · 𝑐
𝑣

.

In the optimized version, according to the randomness of the hash computation, an item is

inserted to every bucket with equal probability, i.e., 1

𝑤
. Therefore, the expectation of the time that a

distinct item inserted to a specific bucket 𝑏

𝐸𝑜𝑝𝑡 {1 𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡 𝑖𝑡𝑒𝑚 𝑖𝑛𝑠𝑒𝑟𝑡𝑒𝑑} = 𝑤

𝑣
.

The expectation of the dequeueing interval

𝐸𝑜𝑝𝑡 = 𝑐 · 𝐸𝑜𝑝𝑡 {1 𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡 𝑖𝑡𝑒𝑚 𝑖𝑛𝑠𝑒𝑟𝑡𝑒𝑑} = 𝑤 · 𝑐
𝑣

= 𝐸𝑏𝑎𝑠𝑖𝑐 .

□

Analyses on worst cases: There are mainly two worst cases in the optimized version.

• Hash collision: All items are hashed to the same bucket. This will lead to low accuracy as many

frequent items are discarded since they are classified as unpromising. If this occurs, error is large,

and we can address this by replacing the hash function.

• Hash starving: Some buckets have no item hashed into. This means the bucket array has a low

loading rate, and it is memory wasting.

4
The interval between the last arrival time of an item and the time it is dequeued from the bucket/queue.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 10. Publication date: May 2023.
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Next, we derive the probability that the worst cases occur. Suppose there are𝑤 buckets. Con-

sidering the randomness/uniformity of hashing, for an arbitrary bucket Q[𝑖], the probability that

an arbitrary item 𝑒 is located to Q[𝑖] is 1

𝑤
. Suppose the number of distinct items is 𝑁 . Let 𝑁𝑖 be

the number of distinct items located to Q[𝑖]. The expectation of 𝑁𝑖 is 𝐸 (𝑁𝑖 ) = 𝑁
𝑤
. The variance

𝐷 (𝑁𝑖 ) = 𝑁 (𝑤−1)
𝑤2

. Therefore, for each arbitrary 𝜖 , by Chebyshev inequality,

𝑃{|𝑁𝑖 − 𝐸 (𝑁𝑖 ) | ⩾ 𝜖} ⩽ 𝑁 (𝑤 − 1)/𝑤2

𝜖2
.

Hash collision means 𝑁𝑖 ≫ 𝐸 (𝑁𝑖 ). Suppose 𝑎 is a constant that satisfies 1 ⩽ 𝑎 ≪ 𝑤 . Therefore,

𝑃{𝑁𝑖 ⩾
𝑁

𝑎
} ⩽ 𝑃{|𝑁𝑖 − 𝐸 (𝑁𝑖 ) | ⩾

𝑁

𝑎
− 𝑁

𝑤
}

⩽
𝑎2 (𝑤 − 1)
𝑁 (𝑤 − 𝑎)2 ≈

𝑎2

𝑁𝑤
.

Hash starving means 0 ≈ 𝑁𝑖 ≪ 𝐸 (𝑁𝑖 ). Suppose 𝑏 is a constant that satisfies 1 ⩽ 𝑏 ≪ 𝐸 (𝑁𝑖 ) = 𝑁
𝑤
.

Therefore,

𝑃{0 ⩽ 𝑁𝑖 ⩽ 𝑏} ⩽ 𝑃{|𝑁𝑖 − 𝐸 (𝑁𝑖 ) | ⩾
𝑁

𝑤
− 𝑏}

⩽
𝑁 (𝑤 − 1)
(𝑁 − 𝑏𝑤)2 ≈

𝑤

𝑁
.

Note that, 𝑁 and𝑤 are large in data stream and deployment, and𝑤 is usually several orders of

magnitude smaller than 𝑁 (see § 4). Therefore, the probability of the two worst cases occurring is

very low.

Optimization – using fingerprints. As many existing works [38, 42], LadderFilter also supports

using fingerprints to replace the IDs when the length of item ID is long (e.g., 104 bits in TCP packet

streams). Although using fingerprints may result in hash collision of two distinct items, it can

significantly reduce the memory usage. In other words, it can achieve higher accuracy with the same

memory. Next, we show the probability of hash collision, and the expectation of overestimation.

Lemma 2. In the optimized version, the probability of an item 𝑒 suffering from hash collisions

𝑃𝑟 {ℎ𝑎𝑠ℎ 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛} = 1 −
(
1 − 2−𝑙

)𝑛
,

where 𝑙 is the length of the fingerprint, and 𝑛 is the number of distinct items inserted to the bucket
when 𝑒 is in the bucket.

Lemma 3. The expectation of the overestimation of an item 𝑒 caused by hash collisions

𝐸 {𝑜𝑣𝑒𝑟𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛} = 𝑛 · 2−𝑙 .

Table 1. The expectation of overestimation caused by hash collisions.

Probability 𝑛 = 10 𝑛 = 100 𝑛 = 1000

𝑙 = 8 3.906 × 10−2 3.906 × 10−1 3.906 × 100
𝑙 = 16 1.526 × 10−4 1.526 × 10−3 1.526 × 10−2
𝑙 = 32 2.328 × 10−9 2.328 × 10−8 2.328 × 10−7
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The expectation of the overestimation caused by hash collisions is shown in Table 1. For an

infrequent item, 𝑛 ⩽ Tℎ𝑖𝑔ℎ · 𝑐 . Suppose Tℎ𝑖𝑔ℎ = 100 and 𝑐 = 8. 𝑛 ⩽ 800. 𝐸 {𝑜𝑣𝑒𝑟𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛} ⩽
1.526 × 10−2. We recommend using 16-bit fingerprints.

2.3 SIMD Acceleration
The optimized version meets our requirement in terms of memory and time efficiency. However,

it still requires storing and comparing timestamps, which still incurs a large memory and time

overhead. Motivated by this, we propose to accelerate the insertion of LRU buckets with SIMD

instructions. For each bucket, we maintain the ID and frequency of each item, while removing the

last arrival timestamp. To locate the LRU item, we keep the items in time order. Unlike the basic

version, when inserting an item 𝑒 to bucket Q𝑖 [ℎ𝑖 (𝑒)], after inserting/updating a cell, we further
sort the items in the bucket according to time. Suppose 𝑒 is the 𝑗𝑡ℎ item in the bucket. We move the

( 𝑗 + 1)𝑡ℎ items to the 𝑗𝑡ℎ cell, the ( 𝑗 + 2)𝑡ℎ items to the ( 𝑗 + 1)𝑡ℎ cell, ..., the 𝑐𝑡ℎ items to the (𝑐 − 1)𝑡ℎ
cell, and 𝑒 /the 𝑗𝑡ℎ item to the 𝑐𝑡ℎ cell. The 1

𝑠𝑡
, ..., ( 𝑗 − 1)𝑡ℎ items remain in their original cells.

Algorithm 2: SIMD acceleration.

Input: The sequence of the arriving item 𝑖

1 uint16_t 𝑖𝑑 [8], 𝑓 𝑟𝑒𝑞[8];
2 __m128i 𝑖𝑛𝑑𝑒𝑥 [4] = _𝑚𝑚_𝑠𝑒𝑡𝑟_𝑒𝑝𝑖8(8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15);
3 __m128i ∗𝑝_𝑖𝑑 = (__𝑚128𝑖∗)&𝑖𝑑 ;
4 𝑝_𝑖𝑑 [0] = _𝑚𝑚_𝑠ℎ𝑢𝑓 𝑓 𝑙𝑒_𝑒𝑝𝑖8(𝑝_𝑖𝑑 [0], 𝑖𝑛𝑑𝑒𝑥 [𝑖]);

This version seems to require a lot of operations and thus be slow. However, it is ideal for SIMD

acceleration. For a better demonstration, we show the detailed implementation under the following

parameter settings: each bucket consists of 8 cells, and each cell consists of a 16-bit ID/fingerprint

and a 16-bit frequency. Algorithm 2 shows the C++ code for the sorting of IDs. The operation

on frequencies is the same as IDs. For lookup and update operations, please refer to [31, 44, 45].

The idea is to use function _mm_shuffle_epi8 to rearrange each byte in IDs into proper order. To

ensure memory continuity, we record IDs and frequencies in two arrays separately (see Line 1). We

pre-set the order of each byte in rearrangement operations. Line 2 gives a example of the pre-set

order when the arriving item is the 4
𝑡ℎ

item in the bucket. Line 3 transposes the ID array into

a _m128i pointer. The compiler will load all IDs into a 128-bit SIMD register. Line 4 uses SIMD

instruction _mm_shuffle_epi8 to rearrange bytes in the register in proper sequence. The IDs

will then be stored to the proper cells (1 CPU cycle [3]). In summary, we sort the items within 2

SIMD instructions (1 for IDs, and 1 for frequencies), i.e., 2 CPU cycles. We can also implement the

operation over larger scale with _mm256_shuffle_epi8 and _mm512_shuffle_epi8. The sort can
be done within 2 SIMD instructions but requires more swap operations on integers.

Time complexity: Using multiple LRU buckets can accelerate the operations without additional

data structures. Each bucket contains much fewer items than the whole queue, hence we scan much

fewer items during each operation. The optimized version reduces the time complexity fromO(queue

len) to O(bucket size). Most importantly, we use SIMD instructions to optimize enqueue/dequeue.

SIMD instructions can quickly rearrange cells in time order with only 2 instructions, i.e., 2 CPU
cycles.

Discussions on filter algorithm: The reviewer proposes to enqueue the promising item again

with an updated priority (i.e., mark it as recently used) to the same queue. The idea is novel and

interesting but is incompatible with our SIMD acceleration. We will study it in the future work.
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3 LADDERFILTER DEPLOYMENT
In this section, we describe how to deploy LadderFilter on four important tasks in data stream

processing: estimating item frequency, finding top-𝑘 items, finding heavy changes, and finding

super-spreaders. For each task, we first present the problem definition. Then we introduce popular

prior solutions for the task. Finally, we describe how to apply LadderFilter to these solutions.

3.1 Estimating Item Frequency
Problem definition: Given a data stream, reporting the frequency of every item ID.

Prior solutions: The CU sketch [14] is an extension of the well-known CM sketch [11] for

estimating item frequency. A CU sketch consists of 𝑑 counter arrays, and each array is associated

with a hash function. When inserting item 𝑒 , the CU sketch first computes the 𝑑 hash functions to

locate the 𝑑 mapped counters in each counter array. Then, the CU sketch increments the minimum

mapped counters by one, which is called the conservative update strategy. When querying the

frequency of item 𝑒 , the CU sketch computes the 𝑑 hash functions and locates the 𝑑 mapped

counters. Then, the CU sketch reports the minimum value among the mapped counters as the

frequency of item 𝑒 .

Applying LadderFilter:We build a LadderFilter to cooperate with the CU sketch. LadderFilter

will be used to prevent infrequent items from being inserted into the CU sketch, since we consider

the accuracy of frequent items to be more important.

Insertion: When inserting item 𝑒 , we first insert 𝑒 into LadderFilter as mentioned in § 2.2. If

LadderFilter reports 𝑒 as a frequent item, we further insert 𝑒 into the CU sketch. The insertion

frequency depends on whether 𝑒 is reported for the first time. If 𝑒 is reported as a frequent item

for the first time, we insert it with frequency (𝑇ℎ𝑖𝑔ℎ
) to the CU sketch; otherwise, we insert 𝑒 with

frequency (one) to the CU sketch.

Query: There are two steps for a query. 1) We first query CU for the frequency of item 𝑒 . If

its frequency is not 0, it must exceed the high threshold 𝑇ℎ𝑖𝑔ℎ
. Therefore, we consider it as a

frequent item and report the frequency from CU. 2) Otherwise, 𝑒 is an infrequent item. We then

check whether 𝑒 is in LadderFilter. If it is recorded in LadderFilter, we report the frequency from

LadderFilter; otherwise, we report its frequency as 0.

3.2 Finding Top-𝑘 Items
Problem definition: Given a data stream and 𝑘 , reporting the 𝑘 items with the highest frequency.

Prior work: SpaceSaving [28] is the most well-known solution for finding top-𝑘 items. SpaceSaving

uses a data structure called Stream-Summary to maintain frequent items. Stream-Summary achieves

updating and querying in linear time, while maintaining the order of the items. When inserting

item 𝑒 , if 𝑒 is already recorded in Stream-Summary, or it is not full, SpaceSaving inserts 𝑒 into

Stream-Summary. Otherwise, SpaceSaving replaces the item with the minimum frequency in

Stream-Summary with item 𝑒 , and increments its frequency by 1. When querying top-𝑘 items,

SpaceSaving reports the 𝑘 items with the highest frequency in Stream-Summary.

Applying LadderFilter: We build a LadderFilter to cooperate with SpaceSaving. LadderFilter will

be used to prevent infrequent items from being inserted into SpaceSaving. We do this because

all top-𝑘 items must be frequent items, therefore, inserting infrequent items to SpaceSaving will

degrade accuracy.

Insertion: When inserting item 𝑒 , we first check whether 𝑒 is already recorded in SpaceSaving.

If so, we insert it into SpaceSaving. Otherwise, we insert item 𝑒 into LadderFilter. If LadderFilter

reports item 𝑒 as a frequent item, we further insert it into SpaceSaving. Note that similarly to

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 10. Publication date: May 2023.



LadderFilter: Filtering Infrequent Items with Small Memory and Time Overhead 10:11

estimating item frequency, we update SpaceSaving with frequency depending on whether item 𝑒 is

reported as a frequent item for the first time.

Query: When querying top-𝑘 frequent items, we report the 𝑘 items reported by SpaceSaving.

3.3 Finding Heavy Changes
Problem definition: Given a data stream, reporting all items that experience a frequency change

exceeding a threshold TΔ between two consecutive time windows.

Prior work: FlowRadar [24] is a promising solution for finding heavy changes. To find heavy

changes, one FlowRadar is built for each time window. The FlowRadar consists of a Bloom filter

[8] and a counting table. The bloom filter is used to identify whether an inserting item is a new

distinct item. The counting table is an extended Invertible Bloom Lookup Table (IBLT) [18] used

to encode item IDs and their frequency. When inserting item 𝑒 , FlowRadar first checks the bloom

filter to identify whether item 𝑒 is a new item. If so, FlowRadar increments its frequency; otherwise,

FlowRadar further encodes the ID. When querying heavy changes, FlowRadar first decodes its

counting table to get an < 𝑖𝑡𝑒𝑚, 𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 > set. Then, FlowRadar compares the two sets in the

two consecutive time windows, and reports the heavy changes.

Applying LadderFilter:We build a LadderFilter to cooperate with FlowRadar. LadderFilter will be

used to prevent infrequent items from being inserted into the Flowradar. The reason behind it is as

follows: if an item is a heavy change, it must be a frequent item in at least one of the time window.

Because LadderFilter can automatically discard unpromising items, we build a single LadderFilter

and use it to filter infrequent items in all time windows.

Insertion: Similar to finding top-𝑘 items, when inserting an item, we first check the Bloom filter

to find whether the item is already recorded in FlowRadar. If so, we insert the item to it. Otherwise,

we insert the item into LadderFilter. If LadderFilter reports the item as a frequent item, we further

insert it into FlowRadar.

Query: When querying the heavy changes, we first decode the two corresponding FlowRadar for

two consecutive time windows, and get two < 𝑖𝑡𝑒𝑚, 𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 > sets 𝑆1 and 𝑆2. Then we insert the

infrequent items recorded by LadderFilter into 𝑆2. We consider the items in the two sets as potential

heavy changes. After getting the two sets, we calculate the frequency difference between the two

sets. Note that if an item is not recorded in one set, we consider its frequency in the corresponding

time window as zero. We report all items whose frequency difference exceeds TΔ.

3.4 Finding Super-Spreaders
Problem definition: Given a data stream with < 𝑠𝑟𝑐, 𝑑𝑠𝑡 > (source, destination) pair, report all

sources whose number of destinations connected exceeds a threshold T .
Prior work:WavingSketch [23] is a recent solution for finding top-𝑘 items, and can be extended

to find super-spreaders. WavingSketch is made of multiple buckets. Each bucket consists of a

Waving counter and a Heavy part. The Heavy part contains several cells, recording ID, frequency,

and error flags. During an insertion, if the item is recorded in the Heavy Part with no error, or

the Heavy Part is not full, WavingSketch inserts it to the Heavy Part; otherwise, WavingSketch

additionally updates the Waving Counter with an equal probability of +1/−1. To find super-

spreaders, WavingSketch cooperates with a Bloom filter (BF) [8] to remove duplicates. Given an

item < 𝑠𝑟𝑐, 𝑑𝑠𝑡 >, WavingSketch first checks the Bloom filter, to find whether the item is a duplicate.

If not, WavingSketch insert < 𝑠𝑟𝑐, 𝑑𝑠𝑡 > to the Bloom filter, and insert 𝑠𝑟𝑐 to the sketch.

Applying LadderFilter: We build a LadderFilter between the Bloom filter and WavingSketch.

LadderFilter will be used to prevent infrequent items from being inserted into the WavingSketch

after removing duplicates.
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Insertion: When inserting an item < 𝑠𝑟𝑐, 𝑑𝑠𝑡 >, we first check the Bloom filter, to find out

whether the item is a duplicate. We discard the duplicate. We then check whether 𝑠𝑟𝑐 is already

recorded in the Heavy Part of WavingSketch. If so, we insert the item to it. Otherwise, we insert

𝑠𝑟𝑐 into LadderFilter. If LadderFilter reports the item as a frequent item, we further insert it into

WavingSketch.

Query: When querying super-spreaders, we report the frequent items reported by WavingSketch.

4 EXPERIMENTAL RESULTS
4.1 Experimental Setup
Computation platform: We conduct all experiments on a CPU server (Intel i9-10980XE). The

CPU has three levels of caches: 64KB L1 cache and 1MB L2 cache for each core, and 24.75MB L3

cache shared by all cores. We set the CPU frequency to 4.2GHZ and the memory frequency to

3200MHZ.

Implementation: We implement LadderFilter (Ours), ColdFilter (CF) [45], and LogLogFilter (LLF)

[21] in C++, and apply them to the CU sketch [14], SpaceSaving (SS) [28], FlowRadar (FR) [24], and

WavingSketch (WS) [23].

Datasets: The datasets used for the evaluation are listed below.

• IP trace dataset: The IP trace dataset is an anonymized IP trace streams collected from [2]. We

use 𝑠𝑟𝑐𝐼𝑃 as the item ID in the former three tasks. The dataset contains 27M items, with 250k

distinct items. We use a 10× longer dataset for finding super-spreader, and use < 𝑠𝑟𝑐𝐼𝑃, 𝑑𝑠𝑡𝐼𝑃 >

as the item ID.

• WebDocs dataset: The WebDocs dataset is a transactional dataset built from a collection of web

documents [1]. The dataset contains 32M items, with 950k distinct items.

• Synthetic datasets: The two synthetic datasets are generated following the Zipf distribution [30].

The skewness of the two datasets are 0.5 and 1.0, respectively. Each dataset contains 32M items,

with 1.0M distinct items.

Metrics: Metrics used for evaluation are listed below.

• Average Absolute Error (AAE): 1

𝑁

∑𝑁
𝑖=1 |𝑓𝑖 − ˆ𝑓𝑖 |, where 𝑁 is the number of distinct items, 𝑓𝑖 and ˆ𝑓𝑖

are the actual and estimated frequency of the items respectively.

• F1 Score: 2·𝑃𝑅 ·𝑅𝑅
𝑃𝑅+𝑅𝑅 , where PR (Precision Rate) is the ratio of the number of the correct items reported

to the number of all items reported, and RR (Recall Rate) is the ratio of the number of the correct

items reported to the number of all correct items.

• Throughput: The number of operations per second, in million operation per second (Mops).

4.2 Parameter Settings
In this section, we first propose the parameter adjusting method. Then, we show experiments on

some important parameters.

4.2.1 Parameter Adjusting Method.
Methodology:When LadderFilter is cooperating with a sketch, there are two sources of error: 1) the

under-estimation error caused by LadderFilter’s discarding some unpromising items; 2) the inherent

error caused by the sketch, which could be under-estimation, over-estimation, or bidirectional. The

parameters can affect both of them at the same time. Our parameter setting methodology is to balance
the under-estimation error and the inherent error. Take 𝑇ℎ𝑖𝑔ℎ

as an example. If 𝑇ℎ𝑖𝑔ℎ
is too large, it

will lead LadderFilter to discard too many items, and thus result in large under-estimation error. If

𝑇ℎ𝑖𝑔ℎ
is too small, too many items will be inserted into the sketch, resulting in large inherent error.

Therefore, our method for adjusting the parameters is to 1) analyze the nature of the two sources

of error, and 2) find a variableV that can reflect the overall error and minimize it.
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LadderFilter+CU: LadderFilter only leads to under-estimation error, while CU only leads to

over-estimation error. Therefore, the variableV that we choose to reflect the overall error is the

difference between the total under-estimation and the total over-estimation of all items. When

adjusting the parameters, for each round, we build a LadderFilter+CU. After each round of insertion,

we calculate the total under-estimation and the total over-estimation of all items, respectively. If the

under-estimation and the over-estimation are almost equal, we consider that we have obtained an

optimal parameter. If the under-estimation is smaller/larger than the over-estimation, we adjust the

threshold to a larger/smaller value, respectively, and then proceed to the next round of parameter

adjustment.

LadderFilter+SS: Similar to CU, SS only leads to over-estimation error. The parameter adjustment

process of LadderFilter+SS is similar to that of LadderFilter+CU, except that we only calculate the

under-/over-estimation of the items in SS.

LadderFilter+FR: FR can be considered as a zero-error hash table when its loading rate (number

of distinct item
5
: number of buckets) is lower than a theoretical maximum value of around 80%

[24]. When its loading rate exceeds the theoretical maximum value, it can hardly be decoded, and

thus all the items inserted into it become error. Therefore, the only error is the under-estimation

error caused by LadderFilter when the loading rate of FR is lower than the theoretical maximum

value. We find that the fewer items are filtered, the smaller the under-estimation error caused by

LadderFilter, meanwhile the higher the loading rate of FR. Therefore, the variableV that we choose

to reflect the overall error is the loading rate of FR. To minimize the error, the loading rate of FR

should be as higher as possible while lower than the theoretical maximum value. Therefore, when

adjusting the parameters, for each round, we compute the loading rate. If the loading rate is too

small/large, we adjust the threshold to a smaller/larger value, respectively.

LadderFilter+WS: We still choose the difference between the total under-estimation and the total

over-estimation of all items. Unlike CU and SS, WS leads to bidirectional error. According to our

many experimental tests, we observe that when the under-estimation is slightly larger than the

over-estimation, the accuracy reaches the optimal value.

4.2.2 Experiments on Parameter Settings.
Impact of queue number and size (Figure 5(a)-(b)):We find that when using multiple queues to

find top-𝑘 items, the accuracy is insensitive to different parameter settings. As shown in Figure 5(b),

under the near-optimal threshold (50 in the figure, the best observed value of 𝑇ℎ𝑖𝑔ℎ
in our experi-

ment), both single queue and multiple queues achieve high accuracy; while under other thresholds

(> 150 in the figure), the accuracy of using multiple queues, however, is significantly higher than

that of using a single queue. As shown in Figure 5(a), when estimating item frequency, the trend is

opposite. We find that when using 2 queues and setting𝑀Q1 : 𝑀Q2 to 99 : 1, LadderFilter achieves

near optimal accuracy. Therefore, we recommend using these parameters. Note that using 3 or

more queues may help to find frequent items in other datasets and scenarios, and we remain this

design.

Impact of # cells per bucket (Figure 5(c)):We find that when # cells per bucket exceeds 8, the

accuracy stops increasing. The F1-score of 8 cells per bucket is on average 1.35% lower than more

cells per bucket. Therefore, we recommend setting # cells per bucket to 8 to balance the accuracy

and ease of deployment.

5
The number of distinct items can be estimated quickly by linear counting [36].
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Fig. 5. Experimental results on parameter settings.

4.3 Experiments on Estimating Item Frequency
In this section, we compare LadderFilter+CU with CU, CF+CU, and LLF+CU. For Ours+CU, we

set the memory of filter and sketch 𝑀𝑂𝑢𝑟𝑠 : 𝑀𝐶𝑈 = 1 : 9. We set parameters of the compared

algorithms to the recommended values referred to their respective papers.

Accuracy (Figure 6):We find that LadderFilter reduces the error of CU by up to 28.8 times. As

shown in Figure 6, the AAE of LadderFilter is on average 7.43, 15.2, and 7.29 times lower than that

of CU, CU+CF, and CU+LLF, respectively. Note that LadderFilter achieves high accuracy under

limited memory. For example, when the memory is 100KB, the AAE of LadderFilter is on average

7.08, 5.95, 93.0, and 49.5 times lower than the compared algorithms on each datasets, respectively.

The reason is that LadderFilter approximately discards infrequent items from the filter, while CF

and LLF keep all infrequent items. Therefore, LadderFilter consumes less memory, and can use it

more efficiently.

Throughput (Figure 7): We find that LadderFilter achieves higher throughput compared to CF
6

and LLF. As shown in Figure 7, the throughput of LadderFilter is 1.17 and 1.09 times higher than

that of CU+CF and CU+LLF, respectively.

Discussions on different datasets: The accuracy of LadderFilter varies among different datasets.

There are mainly two reasons. First, the skewness varies among different datasets. The accuracy

of LadderFilter is related to the accuracy of the dedicated data structure it cooperated with, and

the accuracy of the dedicated data structures is usually highly correlated with the skewness of the

data stream [10, 31, 40]. Therefore, LadderFilter has different accuracy on datasets with different

skewness. This feature is more evident in synthetic datasets (see Figure 6(c)-(d) & 8(c)-(d)). Second,

the arrival pattern of items varies among different datasets. For example, in synthetic datasets,

items arrive in random order. In the IP trace dataset, items arrive in the pattern of burst [43].

Therefore, the time it takes an infrequent item to become a frequent item varies among datasets.

Our experiments have demonstrated that LadderFilter can work well for different skewnesses and

arrival patterns.

6
The results do not include aggregate-and-report, because this optimization is orthogonal to the filter, and can be applied to

any compared algorithm.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 10. Publication date: May 2023.



LadderFilter: Filtering Infrequent Items with Small Memory and Time Overhead 10:15

0 . 0 0 0 . 2 5 0 . 5 0 0 . 7 5 1 . 0 01

1 0

1 0 0

1 k
AA

E

M e m o r y ( M B )

 C U           O u r s + C U
 C F + C U    L L F + C U

(a) IP trace.

0 . 0 0 0 . 2 5 0 . 5 0 0 . 7 5 1 . 0 01

1 0

1 0 0

1 k

AA
E

M e m o r y ( M B )

 C U           O u r s + C U
 C F + C U    L L F + C U

(b) WebDocs.

0 . 0 0 0 . 2 5 0 . 5 0 0 . 7 5 1 . 0 01 0

1 0 0

1 k

1 0 k

AA
E

M e m o r y ( M B )

 C U           O u r s + C U
 C F + C U    L L F + C U

(c) Zipf 0.5.

0 . 0 0 0 . 2 5 0 . 5 0 0 . 7 5 1 . 0 01

1 0

1 0 0

1 k
AA

E

M e m o r y ( M B )

 C U           O u r s + C U
 C F + C U    L L F + C U

(d) Zipf 1.0.

Fig. 6. Accuracy on estimating item frequency.
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Fig. 7. Throughput on four data stream tasks.

4.4 Experiments on Finding Top-𝑘 Items
In this section, we compare LadderFilter+SS with SS, CF+SS, and LLF+SS. We set 𝑘 to 1000. For

filter+SS, we set the number of items in SS to 1.5 × 𝑘 . For the original SS, we additionally record

𝑀𝑓 𝑖𝑙𝑡𝑒𝑟

100𝐵
items for comparison fairness

7
.

Accuracy (Figure 8):We find that LadderFilter improves the accuracy of SS by up to 17.2 times.

As shown in Figure 8, the F1 Score of LadderFilter is on average 0.330, 0.130, and 0.310 higher

than the one of SS, SS+CF, and SS+LLF, respectively. Note that LadderFilter achieves high accuracy

7
Existing works show that the memory usage of each item in SS is around 100B [21, 45].
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even with very little memory. With only 30KB, 20KB, 350KB, and 30KB of memory, the F1 Score of

LadderFilter exceeds 0.9 on each dataset, respectively.
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Fig. 8. Accuracy on Finding top-𝑘 items.

Throughput (Figure 7):We find that LadderFilter improves the throughput of SS. As shown in

Figure 7, the throughput of LadderFilter is 1.29, 1.67, and 2.73 times higher than the one of SS,

SS+CF, and SS+LLF, respectively.

4.5 Experiments on Finding Heavy Changes
In this section, we compare LadderFilter+FR with FR, CF+FR, and LLF+FR. We set the threshold of

heavy changes TΔ to 0.01% of total item number. For filter+FR, we allocate 1MB memory for FR.

Accuracy (Figure 9): We find that LadderFilter with limited memory can filter the infrequent

items inserted into FR, so that FR can be decoded successfully. As shown in Figure 9, with only

20KB of memory, the F1 Score of LadderFilter exceeds 0.9 on both datasets. The required memory

of filter is on average 4.0 and 14.5 times lower than that of CF and LLF, respectively. Note that to

successfully decode, FR requires more than 2.7MB and 9.6MB of memory, respectively; FR+LLF

requires more than 400KB of filter memory on the Web page dataset.

Throughput (Figure 7):We find that LadderFilter improves the throughput of FR. As shown in

Figure 7, the insertion throughput of LadderFilter is 1.37, 1.61, and 1.78 times higher than the one

of FR, FR+CF, and FR+LLF, respectively.
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Fig. 9. Accuracy on finding heavy changes.

4.6 Experiments on Finding Super-Spreaders
In this section, we compare LadderFilter+WS with WS, CF+WS, LLF+WS. We set the threshold

of super-spreaders T to the number of destinations connected to the 1500
𝑡ℎ

super-spreader. To

remove duplicates, we allocate 5MB for BF. For Ours+WS, we set the memory of filter and sketch

𝑀𝑂𝑢𝑟𝑠 : 𝑀𝑊𝑆 = 3 : 7.

Accuracy (Figure 10): We find that LadderFilter improves the accuracy of WS by up to 2.42 times.

As shown in Figure 10, the F1 Score of LadderFilter is on average 0.191, 0.291, and 0.341 higher

than the one of WS, CF+WS, and LLF+WS, respectively. The AAE of LadderFilter is on average

1.55, 3.41, and 30.4 times lower than the one of WS, CF+WS, and LLF+WS, respectively.
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Fig. 10. Accuracy on finding super-spreaders.

Throughput (Figure 7):We find that LadderFilter achieves a comparable throughput with WS, and

higher throughput compared with CF and LLF. As shown in Figure 7, the throughput of LadderFilter

is 1.26 and 1.23 times higher than the one of CF+WS and LLF+WS, respectively.

5 RELATEDWORK
In this section, we first introduce existing solutions for filtering infrequent items. Then we introduce

existing solutions for four typical tasks in data stream processing.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 10. Publication date: May 2023.



10:18 Yuanpeng Li et al.

5.1 Filtering Infrequent Items
In skewed data streams, filtering infrequent items is an important strategy to improve the accuracy

of tasks favoring frequent items. The most relevant works to LadderFilter are ColdFilter (CF) [45]

and LogLogFilter (LLF) [21]. ColdFilter uses an additional sketch to filter infrequent items, and only

inserts frequent items to the dedicated sketch. ColdFilter relies on a 2-layer CU sketch [14] with

different-sized counters. The counter size of the first layer is small (e.g., 4 bits), and the counter size
of the second layer is large (e.g., 16 bits). For every incoming item, ColdFilter first inserts it to the

first layer. If all mapped counters in the first layer overflow, ColdFilter then inserts it to the second

layer. ColdFilter is also associated with a threshold for identifying frequent items. If the frequency

of an item exceeds the threshold, ColdFilter reports the item as a frequent item. By filtering the

infrequent items, ColdFilter improves the accuracy of frequent items. However, ColdFilter falls

short in terms of memory efficiency as it records the approximate frequency of all items. Further, it

requires multiple hash computations and memory accesses, and thus is less time efficient.

LogLogFilter [21] replaces the CU sketch in ColdFilter by a LogLog structure [13], so as to enlarge

the filter range. LogLogFilter is a register array associated with multiple hash functions and a

random generator. For every incoming item, LogLogFilter first computes hash functions to locate

the corresponding registers, and decides whether the item is an infrequent item. If so, LogLogFilter

generates random numbers that follow a geometric distribution and updates the corresponding

registers. LogLogFilter inherits the advantages and limitation of ColdFilter, and thus also falls short

in terms of both memory and time efficiency.

On top of the previous two works, many sketches record frequent and infrequent items separately.

Typical sketches include ASketch [31], HeavyGuardian [38], ElasticSketch [39], NitroSketch [25],

SeqSketch [20], etc. [37, 40, 42, 43].

5.2 Data Stream Processing Tasks
Estimating item frequency: Classic solutions in estimating item frequency include the CM

(Count-Min) sketch [11], the CU (Conservative Update) sketch [14], and the Count sketch [9]. A

CM sketch consists of multiple counter arrays and hash functions for mapping items to counters in

counter arrays. The CM sketch increments the mapped counters by 1 during insertion, and reports

the minimum value of the mapped counters during query. The CU sketch applies a conservative

update strategy to the CM sketch, and thus improves the accuracy. The Count sketch also consists

of multiple counter arrays and hash functions. It updates each counter with an equal probability of

+1/-1, and thus achieves unbiased estimation.

Finding top-𝑘 items: Typical solutions in finding top-𝑘 items include SpaceSaving [28], Unbiased

SpaceSaving [33], etc. [17, 23, 27, 38]. SpaceSaving maintains top-𝑘 items and their frequency

using a data structure called Stream-Summary, and guarantees no underestimated error. Unbiased

SpaceSaving applies a probabilistic replacement strategy to SpaceSaving for unbiased estimation.

Finding heavy changes: A kind of solution in finding heavy changes is to record all items in each

time window, and then compare the two consecutive time windows and report heavy changes.

Typical solutions include FlowRadar [24], k-ary [22], and the reversible sketch [32].

Finding super-spreaders: A kind of solution in finding super-spreaders is to combine an existing

sketch with a bitmap/Bloom filter to remove duplicates. Typical solutions include OpenSketch [41]

and WavingSketch [23].

6 CONCLUSION
In this paper, we proposed LadderFilter, which filters infrequent items with limited memory and

time overhead. To achieve memory efficiency, LadderFilter relies on multiple LRU queues to discard

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 10. Publication date: May 2023.



LadderFilter: Filtering Infrequent Items with Small Memory and Time Overhead 10:19

unpromising items, instead of keeping all frequent and infrequent items. To achieve time efficiency,

we leverage SIMD instructions to implement a LRU policy. LadderFilter can be applied to various

sketches, and can significantly improve their accuracy and throughput. All related code is provided

open-source at Github [4].
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